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1. (a) The optimal control problem can be stated as

minimize
∫ 1

0
−y(t)dt

subject to ẋ(t) = V cos u(t)
ẏ(t) = V sin u(t)
x(0) = 0, x(1) = 1
y(0) = 0, y(1) = 0

The Hamiltonian is given by

H(t, x, u, λ) = −y + λxV cos u + λyV sin u

Pointwise minimization yields

0 = ∂H

∂u
= −λxV sin u + λyV cos u ⇒ tan u = λy

λx

The adjoint equation is given by

λ̇x(t) = −∂H

∂x
= 0

λ̇y(t) = −∂H

∂y
= 1

⇒
λx(t) = a1

λy(t) = a2 + t
(1)

for some constants a1 and a2. We then get

tan u(t) = λy(t)
λx(t) = a2 + t

a1
= a2

a1︸︷︷︸
:=c1

+ 1
a1︸︷︷︸

:=c2

t = c1 + c2t

for some constants c1 and c2.
(b) We use PMP to find the open loop control.

The Hamiltonian is given by
H(t, x, u, λ) = λ1x2 + λ2u

Pointwise minimization yields

µ̃(t, x, λ) = arg min
|u|<1

H(t, x, u, λ) =


−1, λ2 > 0
1, λ2 < 0
ũ, λ2 = 0

,

where ũ is arbitrary in [−1, 1]. Thus the optimal control is expressed as

u∗(t) ≜ µ̃(t, x(t), λ(t)) =


−1, σ(t) > 0
1, σ(t) < 0
ũ, σ(t) = 0

,
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where we have defined the switching function as

σ(t) ≜ λ2(t)

The adjoint equation is given by

λ̇1(t) = − ∂H

∂x1
= 0,

λ̇2(t) = − ∂H

∂x2
= −λ1(t)

⇒
λ1(t) = c1

λ2(t) = −c1t + c2
(2)

and the boundary constraints are

λ(1) − ∂ϕ

∂x
(1, x(1)) ⊥ Sf ⇐⇒

(
λ1(1)
λ2(1)

)
−

(
0
1

)
= ν

(
1
0

)
, ν ∈ R

which implies that λ2(1) = 1 and λ1(1) is free. Thus,

σ(1) = λ2(1) = 1 > 0

which gives that u∗(1) = −1. Since σ̇(t) = λ̇2(t) = −c1 it follows that at most one switch will
occur. We then get

u∗(t) =
{

1, 0 ≤ t ≤ t′

−1, t′ ≤ t ≤ 1
, (3)

for some unknown switching time t′ ∈ [0, 1]. Note, if no switch would occur, this can still be
described with (3) using t′ = 0.
To find a value of t′ we need to take the constraint x1(1) = 0 into consideration. Consequently,
we have to find x(t) when the control (3) is used. For t ∈ [0, t′] we have

ẋ1(t) = x2(t)
ẋ2(t) = 1
x1(0) = 0
x2(0) = 0

⇒ x1(t) = t2

2
x2(t) = t

and for t ∈ [t′, 1] we then get

ẋ1(t) = x2(t)
ẋ2(t) = −1

x1(t′) = t′2

2
x2(t′) = t′

⇒ x1(t) = − t2

2 + 2t′t − t′2

x2(t) = −t + 2t′

We now have

x1(1) = −1
2 + 2t′ − t′2 = 0 ⇒ t′ = 1 ±

√
1 − 1

2 = 1 − 1√
2

where one solution has been excluded since t′ ∈ [0, 1]. We then get the open loop control

u∗(t) =
{

1, 0 ≤ t ≤ 1 − 1√
2

−1, 1 − 1√
2 ≤ t ≤ 1.
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Figure 1: The shortest path problem in exercise 2.

2. (a) The shortest path from s to e maximizes the total profit over N days, see figure 1.
The corresponding dynamic programming algorithm is

J(N, i) = 0
J(k, i) = min{−rk+1

i + J(k + 1, i)︸ ︷︷ ︸
≜qk+1

i
, stay

, c − rk+1
ī

+ J(k + 1, ī)︸ ︷︷ ︸
≜qk+1

ī
, switch

}

J(0, s) = min{−r1
1 + J(1, 1), − r1

2 + J(1, 2)}

(b) Consider the difference Qk
i = qk

i − qk
ī
. If Qk

i ≤ 0 it is optimal to stay in i, and if Qk
i ≥ 0 it is

optimal to switch to ī.

Qk
i = qk

i − qk
ī

= −rk
i + J(k, i) − c + rk

ī − J(k, ī)
= Rk

i − c + J(k, i) − J(k, ī)

By using the lemma we have
Rk

i − 2c ≤ Qk
i ≤ Rk

i .

Thus, if Rk
i ≤ 0 then Qk

i ≤ 0 and it is optimal to stay. If Rk
i ≥ 2c then Qk

i ≥ 0 and it is
optimal to switch.

3. (a) • The discretization method is straightforward to apply to all problems. There exist many
good algorithms for nonlinear optimization. Drawbacks are the large number of variables
and constraints, and that the solution may not converge to the solution of the original
problem.

• A shooting method is straightforward to apply to all problems, but it is crucial to find a
good initial guess of λ(0). The transition matrix may sometimes be ill conditioned when
using a shooting method, but that is a minor problem for these quite simple problems.

• A gradient method is straightforward to apply to (1) and (2), but (3) requires a slightly
more complex gradient algorithm due to the the terminal constraint. Convergence tends
to be slow for the gradient methods, but this is a minor problem for these quite simple
problems.

(b) Problem (1) is a linear-quadratic problem that is possible to solve analytically with HJBE. Use
V (t, x) = P (t)x2, where P (t) is a positive function that can be obtained by solving the Riccati
equation. The optimal feedback law is µ(t, x) = −P (t)x.

(c) Note that Problem (3) is the same problem as in exercise 1, but with an additional constraint
on the final state. Thus, since Sf is a set with just one point then there is no constraint on
λ(tf ). Thus, the shape of the control signal can be derived, but with one unknown constant.
By substituting the control signal in the dynamic model with the control law u(t) = −1/2λ(t)
we obtain a linear ODE of order one that is straightforward to solve and by using the initial
and final state constraints all constants can be found.
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4. (a) Since

q̇(s) = q′(s)ṡ,

q̈(s) = d

dt

(
q′(s)

)
ṡ + q′(s)s̈ = q′′(s)ṡ2 + q′(s)s̈,

it holds that

τ
(1)= M(q)q̈ + C(q, q̇)q̇ + G(q)
= M

(
q(s)

)
(q′′(s)ṡ2 + q′(s)s̈) + C

(
q(s), q′(s)ṡ

)
q′(s)ṡ + G

(
q(s)

)
= M

(
q(s)

)
q′(s)s̈ +

(
M

(
q(s)

)
q′′(s) + C

(
q(s), q′(s)

)
q′(s)

)
ṡ2 + G

(
q(s)

)
,

= m(s)s̈ + c(s)ṡ2 + g(s),

where the third equality follows from the given information that C(·, ·) is linear in the joint
velocities, i.e., C

(
q(s), q′(s)ṡ

)
= C

(
q(s), q′(s)

)
ṡ.

(b) We have

T =
∫ T

0
dt =

[
dt = dt

ds
ds = 1

ṡ
ds

]
=

∫ s(T )

s(0)

1
ṡ

ds =
∫ 1

0

1
ṡ

ds,

which proves the first statement. Finally, since ḃ(s) = b′(s)ṡ, it holds that

b′(s) = 1
ṡ

d

dt

(
ṡ2)

= 1
ṡ

2(ṡ)s̈ = 2s̈ ≜ 2a(s).

(c) Now, the objective function can be describe by

T =
∫ 1

0

1
ṡ

ds =
∫ 1

0

1√
b(s)

ds,

and the constraints follows from the fact shown above and that

b(0) = b(s(0)) = (ṡ(0))2 = 0,

b(1) = b(s(T )) = (ṡ(T ))2 = 0,

b(s) = (ṡ)2 ≥ 0.

(d) The listed case yields
m(s) = 1, c(s) = 0, g(s) = cos (s),

which in turn implies that

τ = s̈ + cos (s) = a(s) + cos (s).

Thus, the torque requirements can be stated as

−2 − cos (s) ≤ a(s) ≤ 2 − cos (s).

The Hamiltonian is given by
H(b, a, λ) ≜ 1√

b
+ 2λa.

Pointwise minimization yields

a∗(s, λ) = arg min
−2−cos (s)≤a≤2−cos (s)

{ 1√
b

+ 2λa
}

=
{

2 − cos (s), λ < 0
−2 − cos (s), λ > 0

The adjoint equation is given by

λ′ = −∂H

∂b
(b, a, λ) = 1

2b−3/2.
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This implies that the switching function σ = λ has the property

σ′ = λ′ = 1
2b−3/2 > 0,

and thus at most one switching from λ < 0 to λ > 0 will occur. Now, it holds that

b′(s) = 2a(s) =
{

4 − 2 cos (s), λ < 0
−4 − 2 cos (s), λ > 0

,

which implies that

b(s) =
{

4s − 2 sin (s) + c1, λ < 0
−4s − 2 sin (s) + c2, λ > 0

,

for some constants c1 and c2. With b(0) = b(1) = 0 this becomes

b(s) =
{

4s − 2 sin (s), λ < 0
−4s − 2 sin (s) + 4 + 2 sin (1), λ > 0

.

The intersection
4s − 2 sin (s) = −4s − 2 sin (s) + 4 + 2 sin (1),

yields the switching time s̃ =
(
2 + sin (1)

)
/4 and thus

a∗ =
{

2 − cos (s), s < s̃

−2 − cos (s), s > s̃

is the optimal control policy.
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