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1. (a) A simple model of a boat moving at constant speed is

ẋ = V cos u

ẏ = V sin u

where x and y are the positions in the xy-plane, V is the constant
speed and u is the heading angle.

x

y

u

It is desired to make a fishing trip from the initial position

x(0) = 0, y(0) = 0

to the final position

x(1) = 1, y(1) = 0

Since there is more fish at positions with higher y-coordinates the
trip is planned to maximize ∫ 1

0
y dt

Show that a fishing trip satisfying the Pontryagin minimum prin-
ciple has the property that

tan u = c1 + c2t

for some constants c1 and c2. (5p)
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(b) An industrial robot is configured to move a tool in one dimension.
The position is x1 and the velocity is x2. Newton’s force relation
then gives the model

ẋ1 = x2

ẋ2 = u

where the applied force u is the control signal which is limited by

|u| ≤ 1

One wishes to move the tool in such a way that it returns to
its original position with maximum negative velocity, i.e. the
optimization problem is

min x2(1), with x1(0) = 0, x2(0) = 0, x1(1) = 0

Compute the optimal open loop control u as a function of time.
(5p)
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2. A businessman operates out of a van that he sets up in one of two
locations on each day. If he operates in location i (where i = 1, 2) on
day k he makes a known and predictable profit denoted rk

i . However,
each time he moves from one location to the other, he pays a setup
cost c. The businessman wants to maximize his total profit over N
days.

(a) The problem can be formulated as a shortest path problem (SPP)
where the node (k, i) is representing location i at day k. Let s
and e be the start node and the end node, respectively. The costs
of all edges are:

• s to i1 with cost −r1
i

• ik to ik+1 (i.e. no switch) with cost −rk+1
ik+1

, k = 1, ..., N − 1
• ik to īk+1 (i.e. switch) with cost c − rk+1

īk+1
, k = 1, ..., N − 1

• iN to e with cost 0
where ī denotes the location that is not equal to i, i.e. 1̄ = 2 and
2̄ = 1. Write a figure to illustrate the SPP and the definitions
of variables and parameters. Write the corresponding dynamic
programming algorithm. (Note that you do not have to solve the
problem.) (5p)

(b) Suppose he is at location i on day k − 1 and let

Rk
i = rk

ī − rk
i .

Show that if Rk
i ≤ 0 it is optimal to stay at location i, while if

Rk
i ≥ 2c it is optimal to switch. You can use the following lemma.

Lemma: For every k = 1, 2, ..., N it holds:

|J(k, i) − J(k, ī)| ≤ c

where J(k, i) is the optimal cost-to-go function at stage k for
state i. (5p)
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3. Consider the following optimal control problems:

minimize
u(·)

∫ tf

0

(
x2(t) + u2(t)

)
dt (1)

subject to ẋ(t) = x(t) + u(t),
x(0) = 1

minimize
u(·)

∫ tf

0

(
x(t) + u2(t)

)
dt (2)

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0

minimize
u(·)

∫ tf

0

(
x(t) + u2(t)

)
dt (3)

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0
x(tf ) = 1.

(a) Suppose you must solve these problems numerically. Describe
advantages and disadvantages of (A) the discretization method
(constrained nonlinear program), (B) the shooting method (bound-
ary condition iteration), and (C) the gradient method (first order
gradient search of the cost function) for solving these three opti-
mal control problems. (5p)

(b) Make comments on if and how the problem (1) can be solved by
using HJBE. Note that you do not necessarily have to solve the
problems, but your statements must be well motivated. (2p)

(c) Make comments on if and how the problem (3) can be solved by
using PMP. Note that you do not necessarily have to solve the
problems, but your statements must be well motivated. (3p)
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4. Consider the motion of a robotic manipulator with joint angles q ∈ Rn,
which may be described as a function of the applied joint torques
τ ∈ Rn as

τ = M(q)q̈ + C(q, q̇)q̇ + G(q), (⋆)

where M(q) ∈ Rn×n is a positive definite mass matrix and C(q, q̇) ∈
Rn×n is a matrix accounting for Coriolis and centrifugal effects, which
is linear in the joint velocities, and where G(q) ∈ Rn is a vector ac-
counting for gravity and other joint angle dependent torques.
Consider a path q(s) as a function of a scalar path coordinate s. The
path coordinate determines the spatial geometry of the path, whereas
the trajectory’s time dependency follows from the relation s(t) between
the path coordinate s and time t.

(a) Show that (⋆) can be expressed in terms of s as

τ(s) = m(s)s̈ + c(s)ṡ2 + g(s),

where

m(s) = M
(
q(s)

)
q′(s),

c(s) = M
(
q(s)

)
q′′(s) + C

(
q(s), q′(s)

)
q′(s),

g(s) = G
(
q(s)

)
,

with the prime denoting derivative, i.e., f ′(x) = (df/dx)(x). (2p)
(b) Consider the time-optimal path tracking problem

minimize
s(·)

T

subject to τ(s) = m(s)s̈ + c(s)ṡ2 + g(s),
s(0) = 0,

s(T ) = 1,

ṡ(0) = 0,

˙s(T ) = 0,

τ
(
s(t)

)
≤ τ

(
s(t)

)
≤ τ

(
s(t)

)
,

where the torque lower bounds τ and upper bounds τ may depend
on s. Using the fact that dt = (dt/ds)ds, show that

T =
∫ 1

0

1
ṡ

ds,
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and that for the change of variables

a(s) = s̈,

b(s) = ṡ2,

it holds that b′(s) = 2a(s). (2p)
(c) Show that, the optimization problem in (b) is equivalent to

minimize
a(·)

∫ 1

0

1√
b(s)

ds

subject to τ(s) = m(s)a(s) + c(s)b(s) + g(s),
b(0) = 0,

b(T ) = 0,

b′(s) = 0,

b′(s) = 2a(s),
b(s) ≥ 0,

τ ≤ τ ≤ τ ,

in the new coordinates. (1p)
(d) Compute the optimal path s, from the problem posed in (c) when

q(s) = s,

M(q) = l2m = 1,

C(q, q̇) = 0,

G(q) = mlg cos (s) = cos (s),
τ(s) = −2, τ(s) = 2.

Hint: Consider s as a “time-variable”. (5p)
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