EXAM IN OPTIMAL CONTROL (TSRT08)

ROOM: TER3
TIME: Wednesday, March 15, 2023, 08.00-12.00
COURSE: TSRT08 OPTIMAL CONTROL
CODE: TEN1
DEPARTMENT: ISY
NUMBER OF EXERCISES: 4
NUMBER OF PAGES (including cover page): 4
EXAMINER: Anders Hansson, 070-3004401
VISITS: 9 and 11
COURSE ADMINISTRATOR: Ninna Stensgård 013-282225, ninna.stensgard@liu.se

APPROVED TOOLS: Formula sheet for the course, any collections of formulas and tables printed by a publishing house, calculator. No other books are allowed.

SOLUTIONS: Linked from the course home page after the exam.
The exam can be inspected and checked out 2023-04-13, Room 2A:573, Bbuilding, entrance 25 , A-corridor, to the right.
PRELIMINARY GRADING: grade 315 points
grade $4 \quad 23$ points
grade 530 points
All solutions should be well motivated. Writing should be neat and clean.
Good Luck!

1. (a) Find the control signal $u(t)$ expressed as a function of the states $x(t)$ which satisfies the optimal control problem

$$
\begin{array}{ll}
\underset{u(\cdot)}{\operatorname{minimize}} & x(T)+\int_{0}^{T} \frac{u^{2}(t)}{x(t)} d t \\
\text { subject to } & \dot{x}(t)=-u(t) \tag{5p}
\end{array}
$$

for a fixed T, using the PMP.
Hint: The adjoint equation is a separable ode.
(b) Find the extremal to the functional

$$
\begin{equation*}
J(y)=\int_{0}^{1}\left(e^{t} y+\frac{\dot{y}^{2}}{t}\right) d t, \tag{5p}
\end{equation*}
$$

satisfying $y(0)=1$ and $y(1)=0$.
2. (a) The system

$$
\dot{x}=u
$$

is controlled to minimize the criterion

$$
\int_{0}^{\infty}\left(x^{2 m}+u^{2}\right) d t
$$

where m is a positive integer. Derive a control law $u=k(x)$ that minimizes the criterion.
(b) Consider an analogous discrete time problem. Minimize

$$
\sum_{0}^{N-1}\left(x(t)^{2 m}+u(t)^{2}\right)+x(N)^{2 m}
$$

for the system

$$
x(t+1)=x(t)+u(t)
$$

Write down the dynamic programming recursion for solving the problem. Explain why it is difficult to solve the problem explicitly if $m>1$.
3. Consider the optimal control problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=0}^{\infty} x_{k}^{2}+u_{k}^{2} \\
\text { subject to } & x_{k+1}=x_{k}+u_{k} \\
& x_{0} \text { given } \\
& u_{k} \in[-1,1]
\end{array}
$$

(a) Compute an optimal feedback policy $\left.u_{k}=\mu\left(x_{k}\right)\right)$ for this problem when the control signal constraint is neglected. Hint: try the value function $J(x)=p x^{2}$, where $p>0$.
(b) Now, consider the case with constraints on the control signal. Compute an approximative solution by solving

$$
\begin{equation*}
\min _{-1 \leq u \leq 1}\left\{x^{2}+u^{2}+J(x+u)\right\} \tag{3p}
\end{equation*}
$$

where $J(x)$ is defined as in the hint above.
(c) Prove that the closed loop system using the feedback of the previous subproblem is stable.
4. Consider the dynamical system

$$
\frac{d^{2} y(t)}{d t^{2}}=u(t)+k
$$

where $|u(t)| \leq 1$ is the control signal and where $0<k<1$ is a known constant. You should solve the optimal control problem

$$
\underset{|u(t)| \leq 1}{\operatorname{minimize}} \int_{0}^{T}|u(t)| d t
$$

subject to the above dynamics with known initial values $y(0)$ and $\dot{y}(0)$ and such that $y(T)=0$. The final time T should also be optimized.
(a) Use PMP to show that the optimal control signal is of the form

$$
u(t)= \begin{cases}-1, & 0 \leq t \leq t_{1} \tag{4p}\\ 0, & t>t_{1}\end{cases}
$$

for some t_{1}.
(b) Show that the following feedback policy is optimal

$$
u(y, \dot{y})= \begin{cases}0, & y \leq 0 \text { or } y \leq \frac{\dot{y}^{2}}{2 k} \text { and } \dot{y} \leq 0 \\ -1, & \text { otherwise }\end{cases}
$$

(c) Consider the case where it is additionally required that $\dot{y}(T)=0$. What form does the optimal control signal now have?

