TSRT08: Optimal Control
 Solutions

2023-01-11

1. (a) We have with $\dot{x}=d x / d y$ that $d x=\dot{x} d y$ and $\dot{y}=1 / \dot{x}$. This gives

$$
\begin{aligned}
\underset{y}{\operatorname{minimize}} \int_{0}^{L} \frac{y \dot{y}^{3}}{1+\dot{y}^{2}} d x & =\underset{y}{\operatorname{minimize}} \int_{0}^{L} \frac{y \frac{1}{\dot{x}^{3}}}{1+\frac{1}{\dot{x}^{2}}} d x \\
& =\underset{x}{\operatorname{minimize}} \int_{H}^{h} \frac{y \frac{1}{\dot{x}^{3}}}{1+\frac{1}{\dot{x}^{2}}} \dot{x} d y \\
& =\underset{x}{\operatorname{minimize}} \int_{H}^{h} \frac{y}{1+\dot{x}^{2}} d y
\end{aligned}
$$

(b) From the Euler-Lagrange equation we obtain the condition

$$
\frac{d}{d y}\left(\frac{\partial}{\partial \dot{x}}\left(\frac{y}{1+\dot{x}^{2}}\right)\right)=0
$$

and hence

$$
\begin{equation*}
\frac{\dot{x} y}{\left(1+\dot{x}^{2}\right)^{2}}=D \tag{1}
\end{equation*}
$$

for some constant D. Since $p=-1 / \dot{y}$ we obtain

$$
y=-D\left(p+\frac{2}{p}+\frac{1}{p^{3}}\right)
$$

Now we have $d y=-p d x=-p(d x / d p) d p$ and hence

$$
\frac{d x}{d p}=-\frac{1}{p} \frac{d y}{d p}=D\left(\frac{1}{p}-\frac{2}{p^{3}}-\frac{3}{p^{5}}\right)
$$

implying

$$
x=C+D\left(\ln p+\frac{1}{p^{2}}+\frac{3}{4 p^{4}}\right)
$$

Alternative solution with PMP: Introducing the dynamics $\dot{x}=u$ gives the OCP

$$
\begin{align*}
& \underset{x}{\operatorname{minimize}} \int_{H}^{h} \frac{y}{1+u^{2}} d y \tag{2}\\
& \dot{x}=u
\end{align*}
$$

The corresponding Hamiltonian is

$$
\begin{equation*}
H(y, x, u, \lambda)=\frac{y}{1+u^{2}}+\lambda u \tag{3}
\end{equation*}
$$

and the adjoint equation $\dot{\lambda}=-\frac{\partial H}{\partial x}=0$ implies that $\lambda=\tilde{D}$ for some constant $\tilde{D} \in \mathbb{R}$.

Now, a stationary point for the Hamiltonian w.r.t. u needs to satisfy

$$
\begin{equation*}
\frac{\partial H}{\partial u}=\frac{2 y u}{\left(1+u^{2}\right)^{2}}+\lambda=0 \Leftrightarrow \frac{2 y u}{\left(1+u^{2}\right)^{2}}=-\tilde{D} \Leftrightarrow \frac{y \dot{x}}{\left(1+\dot{x}^{2}\right)^{2}}=D \tag{4}
\end{equation*}
$$

where we have used that $\lambda=\tilde{D}$ in the first equivalence and have recalled that $\dot{x}=u$ and have defined $D \triangleq-\frac{\tilde{D}}{2}$ in the last equivalence. This is the same as (1), so the rest of the solution is the same as the one above. Note: to rigorously show that a stationary point from above is, in fact, a minimizer to H requires additional arguments.
2. (a) By introducing the control $u=\dot{\theta}$, we can specify the optimal control problem

$$
\begin{array}{cl}
\underset{u}{\operatorname{minimize}} & \int_{r_{1}}^{r_{2}} g(r) \sqrt{1+(r \cdot u(r))^{2}} d r \\
\text { subject to } & \dot{\theta}=u \\
& \theta\left(r_{1}\right)=\theta_{1} \\
& \theta\left(r_{2}\right)=\theta_{2}
\end{array}
$$

where r_{1}, θ_{1} and r_{2}, θ_{2} are the polar coordinates of the points P_{1} and P_{2}, respectively.
(b) With $g(r)=\alpha / r$, the Hamiltonian is given by

$$
H(r, \theta, u, \lambda)=\frac{\alpha}{r} \sqrt{1+(r \cdot u)^{2}}+\lambda \cdot u
$$

Further we have that

$$
\begin{aligned}
\frac{\partial H}{\partial u}(r, \theta, u, \lambda) & =\alpha \frac{r \cdot u}{\sqrt{1+(r \cdot u)^{2}}}+\lambda \\
\frac{\partial^{2} H}{\partial u^{2}}(r, \theta, u, \lambda) & =\alpha \frac{r}{\left(1+(r \cdot u)^{2}\right)^{3 / 2}}
\end{aligned}
$$

Since $\alpha>0$ and $r>0$ we have that $\frac{\partial^{2} H}{\partial u^{2}}>0 \forall u$. Hence, $H(r, \theta, u, \lambda)$ is strictly convex in u. Therefore, pointwise minimization yields

$$
0=\frac{\partial H}{\partial u}\left(r, \theta^{*}(r), u^{*}(r), \lambda\right)=\alpha \frac{r \cdot u^{*}(r)}{\sqrt{1+\left(r \cdot u^{*}(r)\right)^{2}}}+\lambda(r)
$$

The adjoint equation is given by

$$
\dot{\lambda}=-\frac{\partial H}{\partial \theta}(r, \theta, u, \lambda)=0
$$

without final constraint on $\lambda\left(r_{2}\right)$ since we do have a final constraint on $\theta\left(r_{2}\right)$. This equation has the solution

$$
\lambda(r)=c
$$

for some constant c and the optimal control is

$$
\alpha \frac{r \cdot u^{*}(r)}{\sqrt{1+\left(r \cdot u^{*}(r)\right)^{2}}}=-c
$$

This requires $r \cdot u^{*}(r)$ to be constant, which can be written as

$$
r u^{*}(r)=a \quad \Rightarrow \quad u^{*}(r)=\frac{a}{r}
$$

for some constant a. This gives the optimal path

$$
\dot{\theta}=\frac{a}{r} \quad \Rightarrow \quad \theta=a \log r+b
$$

which we were supposed to show.
(c) Reformulate the optimal path as a function of theta

$$
r(\theta)=e^{\frac{\theta-b}{a}}=B e^{A \theta}
$$

where $A=1 / a$ and $B=e^{-b / a}$. We now require that the initial and final point shall have the same radius r_{0}, such that $r\left(\theta_{1}\right)=r_{0}$ and $r\left(\theta_{2}\right)=r_{0}$. This gives

$$
r_{0}=B e^{A \theta_{1}}, \quad r_{0}=B e^{A \theta_{2}} \quad \Rightarrow \quad A=0, \quad B=r_{0}
$$

which gives

$$
r(\theta)=r_{0}, \quad \text { for } \quad \theta_{1} \leq \theta \leq \theta_{2}
$$

This corresponds to a path with constant radius, i.e. a circle segment.
3. The constraints $U\left(k, x_{k}\right)$ on the input signal may be expressed as

$$
U\left(k, x_{k}\right)=\left\{u_{k}: a x_{k}^{\alpha}-u_{k} \geq 0\right\}
$$

The dynamic programming algorithm yields:

- $k=2$: Then it holds that

$$
J\left(2, x_{2}\right)=0
$$

- $k=1$: Now, the above yields

$$
J\left(1, x_{1}\right)=\min _{u_{1} \in U\left(1, x_{1}\right)}\left\{-\beta \log \left(u_{1}\right)\right\}
$$

which takes its minimum at $u_{1}^{*}=a x_{1}^{\alpha}$. Thus,

$$
J^{*}\left(1, x_{1}\right)=-\beta \log \left(a x_{1}^{\alpha}\right)
$$

- $k=0$: Finally, it follows that

$$
\begin{aligned}
J\left(0, x_{0}\right) & =\min _{u_{0} \in U\left(0, x_{0}\right)}\left\{-\log \left(u_{0}\right)-\beta \log \left(a\left(a x_{0}^{\alpha}-u_{0}\right)^{\alpha}\right)\right\} \\
& =\min _{u_{0} \in U\left(0, x_{0}\right)}\{\underbrace{-\log \left(u_{0}\right)-\beta \log (a)-\alpha \beta \log \left(a x_{0}^{\alpha}-u_{0}\right)}_{\triangleq h\left(u_{0}\right)}\} .
\end{aligned}
$$

The extrema are found via differentiation of h, i.e.,

$$
0=h^{\prime}\left(u_{0}\right)=-\frac{1}{u_{0}}+\alpha \beta \frac{1}{a x_{0}^{\alpha}-u_{0}}=\frac{\alpha \beta u_{0}-\left(a x_{0}^{\alpha}-u_{0}\right)}{u_{0}\left(a x_{0}^{\alpha}-u_{0}\right)}=\frac{(1+\alpha \beta) u_{0}-a x_{0}^{\alpha}}{u_{0}\left(a x_{0}^{\alpha}-u_{0}\right)} .
$$

Since $1+\alpha \beta>1$, the extremum is attained by

$$
u_{0}^{*}=\frac{1}{1+\alpha \beta} a x_{0}^{\alpha} \in U\left(0, x_{0}\right)
$$

with the corresponding optimal cost-to-go function easily calculated from the above. That this constitutes a minimum is verified by the fact that

$$
h^{\prime \prime}\left(u_{0}\right)=\frac{1}{u_{0}^{2}}+\alpha \beta \frac{1}{\left(a x_{0}^{\alpha}-u_{0}\right)^{2}} \geq 0
$$

4. First consider the case when $x=0$; the Bellman equation reads

$$
\begin{align*}
V(0) & =\min _{u \in\{-1,0,1\}}\left\{u^{2}+\gamma V(f(0, u))\right\} \\
& =\min \left\{(-1)^{2}+\gamma V(f(0,-1)), \quad 0^{2}+\gamma V(f(0,0)), \quad 1^{2}+\gamma V(f(0,1))\right\} \tag{5}\\
& =\min \{1+\gamma V(-1), \quad \gamma V(0), \quad 1+\gamma V(1)\},
\end{align*}
$$

where we have used the given table for f in the last equality. Now, the middle case $V(0)=\gamma V(0)$ implies that $V(0)=0$ since $\gamma \neq 1$. Since V is nonnegative this has to be the minimum (since the other cases will yield $V(0)>1>0)$. Hence, we have $V(0)=0$ and the corresponding optimal action is $u=0$.
Next, consider the case when $x=1$; the Bellman equation reads

$$
\begin{align*}
V(1) & =\min _{u \in\{-1,0,1\}}\left\{1^{2}+u^{2}+\gamma V(f(1, u))\right\} \\
& =\min \left\{1+(-1)^{2}+\gamma V(f(1,-1)), \quad 1+0^{2}+\gamma V(f(1,0)), \quad 1+1^{2}+\gamma V(f(1,1))\right\} \tag{6}\\
& =\min \{2+\gamma V(0), \quad 1+\gamma V(1), \quad 2+\gamma V(1)\} .
\end{align*}
$$

First of, the last case cannot be optimal since it is larger than the third case $(2+\gamma V(1)>1+\gamma V(1))$. Therefore we have

$$
\begin{equation*}
V(1)=\min \{2+\gamma V(0), \quad 1+\gamma V(1)\}=\min \{2, \quad 1+\gamma V(1)\}, \tag{7}
\end{equation*}
$$

where $V(0)=0$ from above have been used in the last equality. If the second case would be optimal we would get $V(1)=1+\gamma V(1) \Leftrightarrow V(1)=\frac{1}{1-\gamma}$. Hence,

$$
\begin{equation*}
V(1)=\min \left\{2, \quad 1+\frac{\gamma}{1-\gamma}\right\}=\min \left\{2, \quad \frac{1}{1-\gamma}\right\}, \tag{8}
\end{equation*}
$$

where the first case is the minimum if $2 \leq \frac{1}{1-\gamma} \Leftrightarrow \gamma \geq \frac{1}{2}$. Hence, we get $V(1)=2$, with the corresponding control $u=-1$, if $\gamma \geq \frac{1}{2}$; and we get $V(1)=\frac{1}{1-\gamma}$, with the corresponding control $u=0$, if $\gamma \leq \frac{1}{2}$.
A similar derivation for $x=-1$ gives $V(-1)=2$, with the corresponding control $u=1$, if $\gamma \geq \frac{1}{2}$, and $V(-1)=\frac{1}{1-\gamma}$, with the corresponding control $u=0$, if $\gamma \leq \frac{1}{2}$.
In conclusion we get for $\gamma \geq \frac{1}{2}$ the optimal policy

$$
\mu(x)= \begin{cases}1, & \text { if } x=-1 \tag{9}\\ 0, & \text { if } x=0 \\ -1, & \text { if } x=1\end{cases}
$$

and for $\gamma \leq \frac{1}{2}$ we get the trivial policy $\mu(x)=0$.

