
TSRT08: Optimal Control
Solutions

2023-01-11

1. (a) We have with ẋ = dx/dy that dx = ẋdy and ẏ = 1/ẋ. This gives

minimize
y

∫ L

0

yẏ3

1 + ẏ2 dx = minimize
y

∫ L

0

y 1
ẋ3

1 + 1
ẋ2

dx

= minimize
x

∫ h

H

y 1
ẋ3

1 + 1
ẋ2

ẋdy

= minimize
x

∫ h

H

y

1 + ẋ2 dy

(b) From the Euler-Lagrange equation we obtain the condition

d

dy

(
∂

∂ẋ

(
y

1 + ẋ2

))
= 0

and hence
ẋy

(1 + ẋ2)2 = D (1)

for some constant D. Since p = −1/ẏ we obtain

y = −D
(
p+ 2

p
+ 1
p3

)
Now we have dy = −pdx = −p(dx/dp)dp and hence

dx

dp
= −1

p

dy

dp
= D

(
1
p
− 2
p3 −

3
p5

)
implying

x = C +D

(
ln p+ 1

p2 + 3
4p4

)
Alternative solution with PMP: Introducing the dynamics ẋ = u gives the OCP

minimize
x

∫ h

H

y

1 + u2 dy

ẋ = u

(2)

The corresponding Hamiltonian is

H(y, x, u, λ) = y

1 + u2 + λu (3)

and the adjoint equation λ̇ = −∂H∂x = 0 implies that λ = D̃ for some constant D̃ ∈ R.
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Now, a stationary point for the Hamiltonian w.r.t. u needs to satisfy

∂H

∂u
= 2yu

(1 + u2)2 + λ = 0⇔ 2yu
(1 + u2)2 = −D̃ ⇔ yẋ

(1 + ẋ2)2 = D, (4)

where we have used that λ = D̃ in the first equivalence and have recalled that ẋ = u and have
defined D , − D̃2 in the last equivalence. This is the same as (1), so the rest of the solution
is the same as the one above. Note: to rigorously show that a stationary point from above is,
in fact, a minimizer to H requires additional arguments.

2. (a) By introducing the control u = θ̇, we can specify the optimal control problem

minimize
u

∫ r2

r1

g(r)
√

1 + (r · u(r))2dr

subject to θ̇ = u

θ(r1) = θ1

θ(r2) = θ2

where r1, θ1 and r2, θ2 are the polar coordinates of the points P1 and P2, respectively.
(b) With g(r) = α/r, the Hamiltonian is given by

H(r, θ, u, λ) = α

r

√
1 + (r · u)2 + λ · u

Further we have that
∂H

∂u
(r, θ, u, λ) = α

r · u√
1 + (r · u)2

+ λ

∂2H

∂u2 (r, θ, u, λ) = α
r

(1 + (r · u)2)3/2

Since α > 0 and r > 0 we have that ∂2H
∂u2 > 0 ∀u. Hence, H(r, θ, u, λ) is strictly convex in u.

Therefore, pointwise minimization yields

0 = ∂H

∂u
(r, θ∗(r), u∗(r), λ) = α

r · u∗(r)√
1 + (r · u∗(r))2

+ λ(r)

The adjoint equation is given by

λ̇ = −∂H
∂θ

(r, θ, u, λ) = 0

without final constraint on λ(r2) since we do have a final constraint on θ(r2). This equation
has the solution

λ(r) = c

for some constant c and the optimal control is

α
r · u∗(r)√

1 + (r · u∗(r))2
= −c

This requires r · u∗(r) to be constant, which can be written as

ru∗(r) = a ⇒ u∗(r) = a

r

for some constant a. This gives the optimal path

θ̇ = a

r
⇒ θ = a log r + b

which we were supposed to show.
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(c) Reformulate the optimal path as a function of theta

r(θ) = e
θ−b
a = BeAθ

where A = 1/a and B = e−b/a. We now require that the initial and final point shall have the
same radius r0, such that r(θ1) = r0 and r(θ2) = r0. This gives

r0 = BeAθ1 , r0 = BeAθ2 ⇒ A = 0, B = r0

which gives
r(θ) = r0, for θ1 ≤ θ ≤ θ2

This corresponds to a path with constant radius, i.e. a circle segment.

3. The constraints U(k, xk) on the input signal may be expressed as

U(k, xk) = {uk : axαk − uk ≥ 0}.

The dynamic programming algorithm yields:

• k = 2: Then it holds that
J(2, x2) = 0.

• k = 1: Now, the above yields

J(1, x1) = min
u1∈U(1,x1)

{−β log (u1)},

which takes its minimum at u∗1 = axα1 . Thus,

J∗(1, x1) = −β log (axα1 ).

• k = 0: Finally, it follows that

J(0, x0) = min
u0∈U(0,x0)

{− log (u0)− β log
(
a(axα0 − u0)α

)
}

= min
u0∈U(0,x0)

{− log (u0)− β log (a)− αβ log (axα0 − u0)︸ ︷︷ ︸
,h(u0)

}.

The extrema are found via differentiation of h, i.e.,

0 = h′(u0) = − 1
u0

+ αβ
1

axα0 − u0
= αβu0 − (axα0 − u0)

u0(axα0 − u0) = (1 + αβ)u0 − axα0
u0(axα0 − u0) .

Since 1 + αβ > 1, the extremum is attained by

u∗0 = 1
1 + αβ

axα0 ∈ U(0, x0),

with the corresponding optimal cost-to-go function easily calculated from the above. That
this constitutes a minimum is verified by the fact that

h′′(u0) = 1
u2

0
+ αβ

1
(axα0 − u0)2 ≥ 0.
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4. First consider the case when x = 0; the Bellman equation reads

V (0) = min
u∈{−1,0,1}

{u2 + γV (f(0, u))}

= min{(−1)2 + γV (f(0,−1)), 02 + γV (f(0, 0)), 12 + γV (f(0, 1))}
= min{1 + γV (−1), γV (0), 1 + γV (1)},

(5)

where we have used the given table for f in the last equality. Now, the middle case V (0) = γV (0)
implies that V (0) = 0 since γ 6= 1. Since V is nonnegative this has to be the minimum (since the
other cases will yield V (0) > 1 > 0). Hence, we have V (0) = 0 and the corresponding optimal
action is u = 0.
Next, consider the case when x = 1; the Bellman equation reads

V (1) = min
u∈{−1,0,1}

{12 + u2 + γV (f(1, u))}

= min{1 + (−1)2 + γV (f(1,−1)), 1 + 02 + γV (f(1, 0)), 1 + 12 + γV (f(1, 1))}
= min{2 + γV (0), 1 + γV (1), 2 + γV (1)}.

(6)

First of, the last case cannot be optimal since it is larger than the third case (2+γV (1) > 1+γV (1)).
Therefore we have

V (1) = min{2 + γV (0), 1 + γV (1)} = min{2, 1 + γV (1)}, (7)

where V (0) = 0 from above have been used in the last equality. If the second case would be optimal
we would get V (1) = 1 + γV (1)⇔ V (1) = 1

1−γ . Hence,

V (1) = min
{

2, 1 + γ

1− γ

}
= min

{
2, 1

1− γ

}
, (8)

where the first case is the minimum if 2 ≤ 1
1−γ ⇔ γ ≥ 1

2 . Hence, we get V (1) = 2, with the
corresponding control u = −1, if γ ≥ 1

2 ; and we get V (1) = 1
1−γ , with the corresponding control

u = 0, if γ ≤ 1
2 .

A similar derivation for x = −1 gives V (−1) = 2, with the corresponding control u = 1, if γ ≥ 1
2 ,

and V (−1) = 1
1−γ , with the corresponding control u = 0, if γ ≤ 1

2 .

In conclusion we get for γ ≥ 1
2 the optimal policy

µ(x) =


1, if x = −1
0, if x = 0
−1, if x = 1

(9)

and for γ ≤ 1
2 we get the trivial policy µ(x) = 0.
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