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(a) We have with & = dx/dy that dz = @dy and § = 1/&. This gives
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(b) From the Euler-Lagrange equation we obtain the condition
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for some constant D. Since p = —1/¢ we obtain
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Now we have dy = —pdax = —p(dz/dp)dp and hence
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Alternative solution with PMP: Introducing the dynamics & = u gives the OCP
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The corresponding Hamiltonian is
H(y,z,u,\) = LA (3)
1+ u?
and the adjoint equation A= —%—f = 0 implies that A = D for some constant D € R.



Now, a stationary point for the Hamiltonian w.r.t. u needs to satisfy
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where we have used that A = D in the first equivalence and have recalled that & = u and have

defined D £ —% in the last equivalence. This is the same as (1), so the rest of the solution

is the same as the one above. Note: to rigorously show that a stationary point from above is,
in fact, a minimizer to H requires additional arguments.

By introducing the control v = 9, we can specify the optimal control problem
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where 71,60, and 79,605 are the polar coordinates of the points P; and Ps, respectively.

With g(r) = a/r, the Hamiltonian is given by
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Further we have that
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Since a > 0 and r > 0 we have that %275 > 0 Vu. Hence, H(r,0,u, \) is strictly convex in w.

Therefore, pointwise minimization yields
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The adjoint equation is given by
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without final constraint on A(r2) since we do have a final constraint on 6(r3). This equation
has the solution

A= r,0,u,A) =0
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for some constant ¢ and the optimal control is

r-u*(r)
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This requires r - u*(r) to be constant, which can be written as

ru*(r)=a = u*(r)= 4
r
for some constant a. This gives the optimal path
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which we were supposed to show.



(c) Reformulate the optimal path as a function of theta
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where A =1/a and B = e~/ We now require that the initial and final point shall have the
same radius rg, such that r(6;) = ro and r(f2) = 9. This gives

ro=Bedh, ry=Bed? = A=0, B=rg

which gives
7’(6) =70, for 01 S % S 92

This corresponds to a path with constant radius, i.e. a circle segment.

3. The constraints U(k, ) on the input signal may be expressed as
U(k,zr) = {ug : axy —up > 0}.
The dynamic programming algorithm yields:

e k = 2: Then it holds that
J(Q, $2) =0.

e k =1: Now, the above yields
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which takes its minimum at uj = az{. Thus,
J*(1,21) = —Blog (azy).
e k = 0: Finally, it follows that

J(0, ) = uoer[[}%&zo) {—log (ug) — Slog (a(axg — uo)o‘)}

= min {—log(up) — Blog(a) — aflog (azxy — uo)}.

uoEU(O,wo)
£h(uo)

The extrema are found via differentiation of h, i.e.,
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Since 1+ af > 1, the extremum is attained by
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with the corresponding optimal cost-to-go function easily calculated from the above. That
this constitutes a minimum is verified by the fact that
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4. First consider the case when x = 0; the Bellman equation reads
V(0) = i AV (f(0
(0)= pin (" +9V(f(0,u)}
= min{(~1)? + 7V (£(0,-1)), 0> +7V(£(0,0), 12+V(f(0,1)} (5)
=min{l+V(-1), ~V(0), 1+7V(1)},
where we have used the given table for f in the last equality. Now, the middle case V(0) = vV (0)
implies that V(0) = 0 since y # 1. Since V is nonnegative this has to be the minimum (since the

other cases will yield V(0) > 1 > 0). Hence, we have V(0) = 0 and the corresponding optimal
action is u = 0.

Next, consider the case when x = 1; the Bellman equation reads

V(1) = i 1? +u?+9V(f(1
()= cmin {7+ u" V(L u)}
= min{l+ (=12 +9V(f(1,=1), 1+02+4V(F(1,0), 1+12+v(1,1)} (6
=min{2++V(0), 1++V(1), 2+~V(D)}.
First of, the last case cannot be optimal since it is larger than the third case (24+~V (1) > 1+~V(1)).
Therefore we have

V(1) =min{2 +~V(0), 1+~V(1)} =min{2, 1+~V(1)}, (7)

where V' (0) = 0 from above have been used in the last equality. If the second case would be optimal
we would get V(1) =1++V (1) & V(1) = ﬁ Hence,

V(l)min{2, 1+1j’y}min{2, 1i7}, (8)
where the first case is the minimum if 2 < ﬁ & v > 1. Hence, we get V(1) = 2, with the
corresponding control u = —1, if v > %; and we get V(1) = ﬁ, with the corresponding control
u=0,ify < %

A similar derivation for x = —1 gives V(—1) = 2, with the corresponding control v = 1, if v > %,
and V(-1) = ﬁ, with the corresponding control u = 0, if v < %

In conclusion we get for v > % the optimal policy

1, ifr=-1
wu(x) =40, ifz=0 (9)
-1, ifzxz=1

and for v < % we get the trivial policy p(z) = 0.



