# EXAM IN OPTIMAL CONTROL (TSRT08) 

ROOM: TER2
TIME: Thursday, January 11, 2023, 14.00-18.00
COURSE: TSRT08 OPTIMAL CONTROL
CODE: TEN1
DEPARTMENT: ISY
NUMBER OF EXERCISES: 4
NUMBER OF PAGES (including cover page): 4
EXAMINER: Anders Hansson, 070-3004401
VISITS: 15 and 17 by Daniel Arnstöm
COURSE ADMINISTRATOR: Ninna Stensgård 013-282225, ninna.stensgard@liu.se

APPROVED TOOLS: Formula sheet for the course, any collections of formulas and tables printed by a publishing house, calculator. No other books are allowed.

SOLUTIONS: Linked from the course home page after the exam.
The exam can be inspected and checked out 2023-01-31, 12.30-13:00 in Ljungeln, B-building, entrance 27, A-corridor, to the right.

PRELIMINARY GRADING: grade 315 points
grade $4 \quad 23$ points
grade 530 points
All solutions should be well motivated. Writing should be neat and clean.
Good Luck!

1. Consider Newton's minimal resistance problem:

$$
\operatorname{minimize} \int_{0}^{L} \frac{y \dot{y}^{3}}{1+\dot{y}^{2}} d x
$$

with variable $y$ subject to $y(0)=H$ and $y(L)=h$, where $H>h$. Here $\dot{y}=d y / d x$.
(a) Show that by considering $x$ to be a function of $y$ the following problem

$$
\operatorname{minimize} \int_{H}^{h} \frac{y}{1+\dot{x}^{2}} d y
$$

is an equivalent problem to Newton's minimal resistance problem.
Here $\dot{x}=d x / d y$.
(b) Show that for the optimal solution it holds that $x$ is related to $p=-\dot{y}$ as

$$
\begin{equation*}
x=C+D\left(\ln p+\frac{1}{p^{2}}+\frac{3}{4 p^{4}}\right) \tag{7p}
\end{equation*}
$$

for some constants $C$ and $D$.
2. We are interested in computing optimal transportation routes in a circular city. The cost for transportation per unit length is given by a function $g(r)$ that only depends on the radial distance $r$ to the city center. This means that the total cost for transportation from a point $P_{1}$ to a point $P_{2}$ is given by

$$
\int_{P_{1}}^{P_{2}} g(r) d s
$$

where $s$ represents the arc length along the path of integration. In polar coordinates $(\theta, r)$ the total cost reads

$$
\int_{P_{1}}^{P_{2}} g(r) \sqrt{1+(r \dot{\theta})^{2}} d r
$$

where $\theta=\theta(r)$, and $\dot{\theta}=d \theta / d r$.
(a) Formulate the problem of computing an optimal path as an optimal control problem.
(b) For the case of $g(r)=\alpha / r$ for some positive $\alpha$ show that any optimal path satisfies the equation $\theta=a \ln r+b$ for some constants $a$ and $b$.
(c) Show that if the initial point and the final point are at the same distance from the origin, then the optimal path is a circle segment. You may use the claim in (b).
3. Consider the problem

$$
\begin{array}{ll}
\text { maximize } & \sum_{k=0}^{N-1} \beta^{k} \log \left(u_{k}\right) \\
\text { subject to } & x_{k+1}=a x_{k}^{\alpha}-u_{k} \geq 0, \\
& x_{0} \geq 0 \text { given, }
\end{array}
$$

where $0<\alpha, \beta<1$ and $a>0$ are some constants. This is commonly referred to as the consumption problem in the theory of economics. The variable $u_{k}$ may be interpreted as the consumption for time period $k$ and $x_{k}$ the available capital, which is assumed positive, at time period $k$, respectively. Find the optimal control signal $u_{k}$, where $k=$ 1,0 , for the problem when the horizon is $N=2$ using the dynamic programming algorithm.
4. Let $\mathcal{D}=\mathcal{E}=\{-1,0,1\}$ and let $f: \mathcal{D}^{n} \times \mathcal{E} \rightarrow \mathcal{D}$ and $f_{0}: \mathcal{D} \times \mathcal{E} \rightarrow \mathbf{R}$ be functions, where $f_{0}(x, u)=x^{2}+u^{2}$ and where $f$ is defined via the table

| $u$ | -1 | 0 | 1 |
| ---: | ---: | ---: | ---: |
| -1 | -1 | -1 | 0 |
| 0 | -1 | 0 | 1 |
| 1 | 0 | 1 | 1 |

Consider the infinite horizon optimal control problem

$$
\begin{aligned}
& \operatorname{minimize} \sum_{k=0}^{\infty} \gamma^{k} f_{0}\left(x_{k}, u_{k}\right) \\
& \text { subject to } x_{k+1}=f\left(x_{k}, u_{k}\right), \quad k \geq 0
\end{aligned}
$$

with variables $\left(u_{0}, x_{1}, u_{1}, x_{2} \ldots\right)$, where $x_{0}$ is given, and where $0<\gamma<$ 1 is a discount factor.

The Bellman equation for this optimal control problem is given by

$$
V(x)=\min _{u \in \mathcal{E}}\left\{f_{0}(x, u)+\gamma V(f(x, u))\right\}
$$

Compute the optimal solution to the optimal control problem.
Hint: You will get different answers for the case when $\gamma \leq 1 / 2$ and the case when $\gamma>1 / 2$.

