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1. (a) The Hamiltonian is given by

H(t, x, u, λ) = x+ u2 + λ(x+ u+ 1).

Pointwise minimization yields

0 = ∂H

∂u
(t, x, u, λ) = 2u+ λ ⇒ u∗ = −1

2λ.

The adjoint equation is given by

λ̇(t) = −λ(t)− 1, λ(T ) = 0

which is a first order linear ode with the solution

λ(t) = eT−t − 1,

and the optimal control is

u∗(t) = −1
2λ(t) = 1− eT−t

2 .

(b) Introducing x = y and u = ẏ, it holds that ẋ = u and the Hamiltonian is given by

H(t, x, u, λ) = x2 + u2 + λu.

The following equations must hold

λ̇ = −∂H
∂x

(t, x, u, λ) = −2x,

0 = ∂H

∂u
(t, x, u, λ) = 2u+ λ.

The latter yields λ̇ = −2u̇ = −2ÿ, which plugged into the first equation gives

−2ÿ = −2x = −2y ⇔ ÿ − y = 0,

which has the solution
y(t) = c1e

t + c2e
−t,

for some constants c1 and c2. The boundary constraints y(0) = 0 and y(1) = 1 yields(
1 1
e1 e−1

)(
c1
c2

)
=
(

0
1

)
,

which has the solution (
c1
c2

)
= 1
e−1 − e1

(
−1
1

)
.

Thus,
y(t) = 1

e−1 − e1 (e−t − et),

is the sought after extremal.
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2. (a) The cost function that we are considering can be expressed as

J =
∫ T

0
1 dt

This gives the following Hamilton function

H(x, u, λ) = 1 + λ1x2 + λ2x3 + λ3u

The adjoint equations will then be

λ̇1(t) = − ∂H
∂x1

= 0

λ̇2(t) = − ∂H
∂x2

= −λ1(t)

λ̇3(t) = − ∂H
∂x3

= −λ2(t).

This gives λ1(t) = C1, λ2(t) = −C1t + C2 and λ3(t) = −C1
2 t

2 + C2t + C3. Since both x(0)
and x(T ) are fixed, we will not have any boundary conditions on λ(t).
Furthermore, we have that

u = arg min
−1≤u≤1

H(x∗, u, λ) = −sign λ3 = sign (−λ3)

Thus, the necessary condition for optimality is then satisfied by the control

u(t) = sign p(t)

where p(t) = −λ3(t) = C1
2 t

2 − C2t − C3, which is a polynomial with maximum degree of
two. Since a second order polynomial can change sign at most two times, also the control will
change sign at most two times.

(b) The Hamiltonian for the problem is

H(u(t), x(t), λ(t)) = |u(t)|+ λ1(t)x2(t) + λ2(t)u(t)

and the terminal cost
φ(x) = x2

1

The adjoint equations will then be

λ̇1(t) = − ∂H
∂x1

= 0

λ̇2(t) = − ∂H
∂x2

= −λ1(t).

This gives λ1(t) = C1 and λ2(t) = −C1t + C2. Furthermore, with the boundary constraints
we get

λ1(1) = ∂φ

∂x1
(x∗(1)) = 2x∗1(1) = C1

λ2(1) = ∂φ

∂x2
(x∗(1)) = 0

The control signal is chosen as

u = arg min
−1≤u≤1

H(x∗, u, λ) =


−1 λ2 > 1
0 |λ2| ≤ 1
1 λ2 < −1

Since λ2 is a linear function which ends at λ2(1) = 0, u can change value at maximum one
time, either from -1 to 0 or from 1 to 0.
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3. (a) We have the optimization problem on standard form with N = 5, φ(x) = 0, f0(k, x, u) = υku,
and f(k, x, u) = x+ ωku. Note that xk + ωkuk ≤ 10 ⇐⇒ uk ≤ (10− xk)/ωk.

Stage k = N + 1 = 6: J(6, x) = 0.

Stage k = 5:
J(5, x) = max

0≤u≤(W−x)/ω5,u∈{0,1}
{υ5u+ J(6, x+ ω5u)}

= max
0≤u≤(10−x)/2,u∈{0,1}

{3u}
(1)

since the optimal control u and the expression inside the brackets vary for different x ,

x 0 1 2 3 4 5 6 7 8 9 10
J(5, x) 3 3 3 3 3 3 3 3 3 0 0
µ(5, x) 1 1 1 1 1 1 1 1 1 0 0

Stage k = 4:
J(4, x) = max

0≤u≤(W−x)/ω4,u∈{0,1}
{υ4u+ J(5, x+ ω4u}

= max
0≤u≤(10−x)/3,u∈{0,1}

{u+ J(5, x+ 3u)}
(2)

x 0 1 2 3 4 5 6 7 8 9 10
J(4, x) 4 4 4 4 4 4 3 3 3 0 0
µ(4, x) 1 1 1 1 1 1 0 0 0 0 0

Stage k = 3:
J(3, x) = max

0≤u≤(W−x)/ω3,u∈{0,1}
{υ3u+ J(4, x+ ω3u}

= max
0≤u≤(10−x)/4,u∈{0,1}

{7u+ J(4, x+ 4u)}
(3)

x 0 1 2 3 4 5 6 7 8 9 10
J(3, x) 11 11 10 10 10 7 7 3 3 0 0
µ(3, x) 1 1 1 1 1 1 1 0 0 0 0

Stage k = 2:
J(2, x) = max

0≤u≤(W−x)/ω2,u∈{0,1}
{υ2u+ J(3, x+ ω2u}

= max
0≤u≤(10−x)/5,u∈{0,1}

{8u+ J(3, x+ 5u)}
(4)

x 0 1 2 3 4 5 6 7 8 9 10
J(2, x) 15 15 11 11 10 8 7 3 3 0 0
µ(2, x) 1 1 1 1 0 1 0 0 0 0 0

Stage k = 1:
J(1, x) = max

0≤u≤(W−x)/ω1,u∈{0,1}
{υ1u+ J(2, x+ ω1u}

= max
0≤u≤10−x,u∈{0,1}

{2u+ J(2, x+ u)}
(5)

x 0 1 2 3 4 5 6 7 8 9 10
J(1, x) 17 15 13 12 10 9 9 5 3 2 0
µ(1, x) 1 0 1 1 0/1 1 0 1 0 1 0

The maximum is achieved for,
J∗(1, x) = 17 (6)
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(b) Using the dynamics,

xk+1 = xk + ωkuk,

x2 = 0 + 1 = 1⇒ J(2, 1) = 15, u2 = 1
x3 = 1 + 5 = 6⇒ J(3, 6) = 7, u3 = 1
x4 = 6 + 4 = 10⇒ J(4, 10) = 0, u4 = 0
x5 = 10 + 0 = 10⇒ J(5, 10) = 0, u5 = 0

In summary the knapsack is loaded optimally as follows,

k xk Jk uk

1 0 17 1
2 1 15 1
3 6 7 1
4 10 0 0
5 10 0 0

4. (a) The Bellman equation is given by

J(x) = min
u
{f0(x, u) + J(f(x, u))} (7)

where,

f0(x, u) = ρx2 + u2,

f(x, u) = x+ u

Assume that the cost is on the form J = px2, p > 0. Then the optimal control law is obtained
by minimizing (??)

µ(x) = arg min
u

{f0(x, u) + V (f(x, u))},

= arg min
u

{ρx2 + u2 + p(x+ u)2︸ ︷︷ ︸
H

},

Hu = 2u+ 2p(x+ u), Huu = 2(1 + p) � 0

Therefore, Hu = 0 gives the minimum,

u∗ = −p/(1 + p) x

Inserting u∗ in (10),

px2 = ρx2 + p2/(1 + p)2x2 + px2(1− p/(1 + p))2 = (ρ+ p/(1 + p))x2

For this to hold for all x,

p = ρ+ p/(1 + p)

which has the positive solution

p = (ρ+
√
ρ2 + 4ρ)/2
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(b) Since J0(x) = 0, it follows that,

J0(x) = p0x
2 with p0 = 0

Assume that Jk(x) = pkx
2,then

Jk+1(x) = min
u
{f0(x, u) + Jk(f(x, u))} = min

u
{ρx2 + u2 + pk(x+ u)2}

As in (a), the minimum is obtained when the gradient of the expression in the parenthesis is
zero, i.e.

2u+ 2pk(x+ u) = 0

resulting in

u = −pk/(pk + 1)x = lkx

Back-substituting gives

Jk+1(x) = (ρ+ pk

pk + 1)x2

Hence, Jk+1(x) = pk+1x
2 if

pk+1 = ρ+ pk

pk + 1

(c) From(i) it follows that,

pkx
2 = ρx2 + (lkx)2 + pk(x+ lkx)2

and since this has to hold for all x, it follows that,

pk = ρ+ l2k + pk(1 + lk)2

Solving for pk results in the desired recursion,

pk = ρ+ l2k
1− (1 + lk)2

From (ii) it follows that,

µk+1(x) = arg min
u

{f0(x, u) + Jk(f(x, u))}

= arg min
u

{ρx2 + u2 + pk(x+ u)2}

which is similar to the minimization in (b)and hence,

µk+1(x) = −pk

pk + 1x

lk+1 = −pk

pk + 1
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(d) According to the following table, the policy-iteration method (c), converges much faster than
the value-iteration method (b).

k pk(b) lk(b) pk(c) lk(c)
0 0 0 2.6842 -0.1000
1 0.5000 -0.3333 1.1128 -0.7286
2 0.8333 -0.4545 1.0018 -0.5267
3 0.9545 -0.4884 1.0000 -0.5005
4 0.9884 -0.4971 1.0000 -0.5000
5 0.9971 -0.4993 1.0000 -0.5000
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