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(a) The Hamiltonian is given by
H(t,z,u,\) =2 +u? + ANz +u+1).
Pointwise minimization yields

OH 1
0 5 (t,z,u,\) u+A = u 2)\

The adjoint equation is given by
AMt)==At) =1, MNT)=0
which is a first order linear ODE with the solution
At)=el 7t -1,

and the optimal control is
e

2
(b) Introducing x = y and u = g, it holds that & = u and the Hamiltonian is given by

Tt
u(t) = —%)\(t) e

H(t,z,u,\) = 2° + u® + \u.

The following equations must hold

: oOH
= — — = -2
A o (t,x,u, \) z,
oOH
=27 = 2u+ .
0 5 (t, z,u, \) u+ A

The latter yields A = —24 = —2jj, which plugged into the first equation gives
—2j=-"2x=-2y & Hj—y=0,

which has the solution

y(t) = cre’ +coe™t,

for some constants ¢; and c¢3. The boundary constraints y(0) = 0 and y(1) =1 yields

which has the solution

Thus,

is the sought after extremal.



(a) The cost function that we are considering can be expressed as

T
J:/ 1dt
0

This gives the following Hamilton function
H(J?,U, )\) =14 Mxo + Aoxs + A3u

The adjoint equations will then be

. OH

a(t) =~ =0

. OH

Aa(t) = T, —Ai(t)
. oOH

A3(t) = T —X2(1).

This giVGS /\1(t) = Ol, )\2(t) = 7c’1t + 02 and /\3(t) = 7%152 + Ogt + C3. Since both I(O)
and x(T) are fixed, we will not have any boundary conditions on A(t).
Furthermore, we have that

u= argilnéiunng(z*,u, A) = —sign A3 = sign (—A3)

Thus, the necessary condition for optimality is then satisfied by the control
u(t) = sign p(t)

where p(t) = —\3(t) = S§¢2 — Ost — O3, which is a polynomial with maximum degree of
two. Since a second order polynomial can change sign at most two times, also the control will
change sign at most two times.

(b) The Hamiltonian for the problem is
H(u(t), z(t), A(t)) = |u(®)] + A ()z2(t) + A2 (t)u(t)

and the terminal cost

$(x) = o]
The adjoint equations will then be
. OH
MiE)=—=—=0
1(t) s
. OH
Ao(t) = ——— = =\ (1).
2(t) D3 1(t)
This gives A\1(t) = C7 and A\y(t) = —C1t + Co. Furthermore, with the boundary constraints

we get

M) = 52w (1) = 2011 = €
99

A2(1) = P

(2*(1) = 0

The control signal is chosen as

-1 X>1
u:argilngliunSlH(:ﬁ*,u,A)z (1) \)\)\2|§11
2 < —

Since Ay is a linear function which ends at A\y(1) = 0, u can change value at maximum one
time, either from -1 to 0 or from 1 to 0.



3. (a) We have the optimization problem on standard form with N =5, ¢(z) =0, fo(k,z,u) = viu,
and f(k,x,u) =  + wru. Note that z + wrur < 10 <= uy < (10 — zx) /wi.

Stage k=N+1=6: J(6,2) =0.

Stage k = 5:
J(5,z) = max {vsu+ J(6,2 + wsu)}
0<u<(W-—-z)/ws,uc{0,1}

1
= max {3u} M)
0<u<(10—x)/2,ue{0,1}
since the optimal control u and the expression inside the brackets vary for different x ,
| o [JoJ1[2]3[4]5[6]7[8[9][10]
JG,x) 3131331333 [3[3]0]0
wByz) [ 1|1 (111 1[1{1]|1|0]O
Stage k = 4:
J 4, - J 57
(4,) oguS(WfIg?/}i4,ue{071}{U4u+ (v o) (2)
= max {u+J(5,x+ 3u)}
0<u<(10—z)/3,ue{0,1}
[ o Jof[i1[2]3[4]5[6[7[8[9]10]
J(4,z) || 4 414 413 3100
w4,z [ 1|11 ]1{1|1[0[0]|0|O0] O
Stage k = 3:
J(3,z) = +J(4,z+
(3,2) ogug(ng)a/}f;g,ue{o,l}{Ugu (42 +wsu} 3)
= max {Tu+ J (4,2 + 4u)}
0<u<(10—z)/4,u€{0,1}
[« Jof[1[2]3]4[5]6[7]8[9]10]
J@B,x) |11 |11 101010 |7 |7[{3]|3[|0]O0
w(3,z) || 1 1 1] 1 1 (1(1]0]0]0] 0
Stage k = 2:
2,x) = J
J(2,x) OguS(W—rE?/}ig,ue{O,l}{vzu—’_ (3,2 + wou} "
= max {8u+ J(3,2 + 5u)}
0<u<(10—x)/5,ue{0,1}
[« JoJ1[2[3[4[5]6[7][8[9][10]
J(2,z) |15 [ 15 |11 [ 11 |10 |8 |7 ({330 0
w2,2) || 1| 1| 1]1]0]1[{0]0|0|0O]| O
Stage k = 1:
J(1,z) = max {vju+ J(2,2 + wiu}
0<u<(W-—-=z)/wi,ue{0,1} (5)
= max {2u+ J(2,x +u)}
0<u<10—z,ue{0,1}
[ @ Joft[2[3[4([5[6]7[8]9[10]
J(Lz) || 17| 15|13 ]12| 10 |9][9|5|3[2]| 0
wlyz) || 1] 0 |1 1]10/1(1{0|1|0f1]O
The maximum is achieved for,
J*(1,z) =17 (6)



(b) Using the dynamics,

Tg+1 = T + WrUE,
Ty =04+1=1= J(2,1)=15,up = 1
x3=14+5=6= J(3,6) =T,uzs =1
24=6+4=10= J(4,10) =0,uy =0
25 =104+0=10= J(5,10) =0,us =0

In summary the knapsack is loaded optimally as follows,

(o 5[]

1 0 |17 ] 1

2 1 15| 1

316 |7 |1

41101 0 0

5110 0] 0

(a) The Bellman equation is given by

J(@) = min {fo(a, ) + (/) ™)

where,

folz,u) = pa® + u?,
fo,w) =+ u

Assume that the cost is on the form J = pxz?, p > 0. Then the optimal control law is obtained
by minimizing (77)

plx) = argmin {fo(z,u) + V(f(2,u))},

= argmin {pz? 4+ u* + p(x + u)?},
u

H
H,=2u+2p(x+u),Hy, =2(1+p) =0

Therefore, H,, = 0 gives the minimum,

u* = —p/(1+p)x
Inserting uv* in (10),
pa® = px® +p*/(1+p)a® + p2*(1—p/(1+p))* = (p+p/(1 + p))a®

For this to hold for all x,

p=p+p/(1+p)

which has the positive solution

b= (o4 VET )2



(b) Since Jo(z) = 0, it follows that,

Jo(z) = pox? with pg = 0
Assume that Jy(z) = pra?,then

T (2) = min {fo(r, u) + Ji(F(x,w)} = min {pa? + u® + py( +w)?)

As in (a), the minimum is obtained when the gradient of the expression in the parenthesis is
Z€ero, i.e.

2u+2pp(r+u)=0

resulting in

u=—pr/(pr + x =z

Back-substituting gives

_ Pk 2
Tir(a) = (p+ e

Hence, Jyq1(2) = pry12? if

Dk
pr+1

Pk+1=p+

(c) From(i) it follows that,

per? = pr? + (Ipx)? + pr(z + lx)?

and since this has to hold for all x, it follows that,

pe=p+ B4 pe(l+1p)?

Solving for py results in the desired recursion,

p+1
PE= s
1—(1+1)

From (ii) it follows that,
pir1(x) = argmin { fo(z, u) + Jp(f(z,u))}

= argmin {pz? 4+ u* + p(z 4+ u)?}

which is similar to the minimization in (b)and hence,

pr (2) = —22 g
pr+1
ler1 = —Dh
P+ 1



(d) According to the following table, the policy-iteration method (c), converges much faster than
the value-iteration method (b).

pe(®) | () || pr(c) | lk(c)
0 0 2.6842 | -0.1000
0.5000 | -0.3333 || 1.1128 | -0.7286
0.8333 | -0.4545 || 1.0018 | -0.5267
0.9545 | -0.4884 || 1.0000 | -0.5005
0.9884 | -0.4971 || 1.0000 | -0.5000
0.9971 | -0.4993 || 1.0000 | -0.5000

Y| W N = O




