TSRT08: Optimal Control
 Solutions

1. (a) The Hamiltonian is given by

$$
H(t, x, u, \lambda)=x+u^{2}+\lambda(x+u+1)
$$

Pointwise minimization yields

$$
0=\frac{\partial H}{\partial u}(t, x, u, \lambda)=2 u+\lambda \quad \Rightarrow \quad u^{*}=-\frac{1}{2} \lambda .
$$

The adjoint equation is given by

$$
\dot{\lambda}(t)=-\lambda(t)-1, \quad \lambda(T)=0
$$

which is a first order linear ODE with the solution

$$
\lambda(t)=e^{T-t}-1
$$

and the optimal control is

$$
u^{*}(t)=-\frac{1}{2} \lambda(t)=\frac{1-e^{T-t}}{2}
$$

(b) Introducing $x=y$ and $u=\dot{y}$, it holds that $\dot{x}=u$ and the Hamiltonian is given by

$$
H(t, x, u, \lambda)=x^{2}+u^{2}+\lambda u
$$

The following equations must hold

$$
\begin{aligned}
\dot{\lambda} & =-\frac{\partial H}{\partial x}(t, x, u, \lambda)=-2 x \\
0 & =\frac{\partial H}{\partial u}(t, x, u, \lambda)=2 u+\lambda
\end{aligned}
$$

The latter yields $\dot{\lambda}=-2 \dot{u}=-2 \ddot{y}$, which plugged into the first equation gives

$$
-2 \ddot{y}=-2 x=-2 y \quad \Leftrightarrow \quad \ddot{y}-y=0,
$$

which has the solution

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t}
$$

for some constants c_{1} and c_{2}. The boundary constraints $y(0)=0$ and $y(1)=1$ yields

$$
\left(\begin{array}{cc}
1 & 1 \\
e^{1} & e^{-1}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{1},
$$

which has the solution

$$
\binom{c_{1}}{c_{2}}=\frac{1}{e^{-1}-e^{1}}\binom{-1}{1} .
$$

Thus,

$$
y(t)=\frac{1}{e^{-1}-e^{1}}\left(e^{-t}-e^{t}\right),
$$

is the sought after extremal.
2. (a) The cost function that we are considering can be expressed as

$$
J=\int_{0}^{T} 1 d t
$$

This gives the following Hamilton function

$$
H(x, u, \lambda)=1+\lambda_{1} x_{2}+\lambda_{2} x_{3}+\lambda_{3} u
$$

The adjoint equations will then be

$$
\begin{aligned}
& \dot{\lambda}_{1}(t)=-\frac{\partial H}{\partial x_{1}}=0 \\
& \dot{\lambda}_{2}(t)=-\frac{\partial H}{\partial x_{2}}=-\lambda_{1}(t) \\
& \dot{\lambda}_{3}(t)=-\frac{\partial H}{\partial x_{3}}=-\lambda_{2}(t)
\end{aligned}
$$

This gives $\lambda_{1}(t)=C_{1}, \lambda_{2}(t)=-C_{1} t+C_{2}$ and $\lambda_{3}(t)=-\frac{C_{1}}{2} t^{2}+C_{2} t+C_{3}$. Since both $x(0)$ and $x(T)$ are fixed, we will not have any boundary conditions on $\lambda(t)$.
Furthermore, we have that

$$
u=\arg \min _{-1 \leq u \leq 1} H\left(x^{*}, u, \lambda\right)=-\operatorname{sign} \lambda_{3}=\operatorname{sign}\left(-\lambda_{3}\right)
$$

Thus, the necessary condition for optimality is then satisfied by the control

$$
u(t)=\operatorname{sign} p(t)
$$

where $p(t)=-\lambda_{3}(t)=\frac{C_{1}}{2} t^{2}-C_{2} t-C_{3}$, which is a polynomial with maximum degree of two. Since a second order polynomial can change sign at most two times, also the control will change sign at most two times.
(b) The Hamiltonian for the problem is

$$
H(u(t), x(t), \lambda(t))=|u(t)|+\lambda_{1}(t) x_{2}(t)+\lambda_{2}(t) u(t)
$$

and the terminal cost

$$
\phi(x)=x_{1}^{2}
$$

The adjoint equations will then be

$$
\begin{aligned}
& \dot{\lambda}_{1}(t)=-\frac{\partial H}{\partial x_{1}}=0 \\
& \dot{\lambda}_{2}(t)=-\frac{\partial H}{\partial x_{2}}=-\lambda_{1}(t)
\end{aligned}
$$

This gives $\lambda_{1}(t)=C_{1}$ and $\lambda_{2}(t)=-C_{1} t+C_{2}$. Furthermore, with the boundary constraints we get

$$
\begin{aligned}
& \lambda_{1}(1)=\frac{\partial \phi}{\partial x_{1}}\left(x^{*}(1)\right)=2 x_{1}^{*}(1)=C_{1} \\
& \lambda_{2}(1)=\frac{\partial \phi}{\partial x_{2}}\left(x^{*}(1)\right)=0
\end{aligned}
$$

The control signal is chosen as

$$
u=\arg \min _{-1 \leq u \leq 1} H\left(x^{*}, u, \lambda\right)= \begin{cases}-1 & \lambda_{2}>1 \\ 0 & \left|\lambda_{2}\right| \leq 1 \\ 1 & \lambda_{2}<-1\end{cases}
$$

Since λ_{2} is a linear function which ends at $\lambda_{2}(1)=0, u$ can change value at maximum one time, either from -1 to 0 or from 1 to 0 .
3. (a) We have the optimization problem on standard form with $N=5, \phi(x)=0, f_{0}(k, x, u)=v_{k} u$, and $f(k, x, u)=x+\omega_{k} u$. Note that $x_{k}+\omega_{k} u_{k} \leq 10 \Longleftrightarrow u_{k} \leq\left(10-x_{k}\right) / \omega_{k}$.

Stage $k=N+1=6: \quad J(6, x)=0$.
Stage $k=5$:

$$
\begin{align*}
J(5, x) & =\max _{0 \leq u \leq(W-x) / \omega_{5}, u \in\{0,1\}}\left\{v_{5} u+J\left(6, x+\omega_{5} u\right)\right\} \tag{1}\\
& =\max _{0 \leq u \leq(10-x) / 2, u \in\{0,1\}}\{3 u\}
\end{align*}
$$

since the optimal control u and the expression inside the brackets vary for different x,

x	0	1	2	3	4	5	6	7	8	9	10
$J(5, x)$	3	3	3	3	3	3	3	3	3	0	0
$\mu(5, x)$	1	1	1	1	1	1	1	1	1	0	0

Stage $k=4$:

$$
\begin{align*}
J(4, x) & =\max _{0 \leq u \leq(W-x) / \omega_{4}, u \in\{0,1\}}\left\{v_{4} u+J\left(5, x+\omega_{4} u\right\}\right. \\
& =\max _{0 \leq u \leq(10-x) / 3, u \in\{0,1\}}\{u+J(5, x+3 u)\} \tag{2}
\end{align*}
$$

x	0	1	2	3	4	5	6	7	8	9	10
$J(4, x)$	4	4	4	4	4	4	3	3	3	0	0
$\mu(4, x)$	1	1	1	1	1	1	0	0	0	0	0

Stage $k=3$:

$$
\begin{aligned}
J(3, x) & =\max _{0 \leq u \leq(W-x) / \omega_{3}, u \in\{0,1\}}\left\{v_{3} u+J\left(4, x+\omega_{3} u\right\}\right. \\
& =\max _{0 \leq u \leq(10-x) / 4, u \in\{0,1\}}\{7 u+J(4, x+4 u)\}
\end{aligned}
$$

x	0	1	2	3	4	5	6	7	8	9	10
$J(3, x)$	11	11	10	10	10	7	7	3	3	0	0
$\mu(3, x)$	1	1	1	1	1	1	1	0	0	0	0

Stage $k=2$:

$$
\begin{aligned}
J(2, x) & =\max _{0 \leq u \leq(W-x) / \omega_{2}, u \in\{0,1\}}\left\{v_{2} u+J\left(3, x+\omega_{2} u\right\}\right. \\
& =\max _{0 \leq u \leq(10-x) / 5, u \in\{0,1\}}\{8 u+J(3, x+5 u)\}
\end{aligned}
$$

x	0	1	2	3	4	5	6	7	8	9	10
$J(2, x)$	15	15	11	11	10	8	7	3	3	0	0
$\mu(2, x)$	1	1	1	1	0	1	0	0	0	0	0

Stage $k=1$:

$$
\begin{align*}
& J(1, x)=\max _{0 \leq u \leq(W-x) / \omega_{1}, u \in\{0,1\}}\left\{v_{1} u+J\left(2, x+\omega_{1} u\right\}\right. \\
& =\max _{0 \leq u \leq 10-x, u \in\{0,1\}}\{2 u+J(2, x+u)\} \tag{5}
\end{align*}
$$

The maximum is achieved for,

$$
J^{*}(1, x)=17
$$

(b) Using the dynamics,

$$
\begin{aligned}
x_{k+1} & =x_{k}+\omega_{k} u_{k}, \\
x_{2} & =0+1=1 \Rightarrow J(2,1)=15, u_{2}=1 \\
x_{3} & =1+5=6 \Rightarrow J(3,6)=7, u_{3}=1 \\
x_{4} & =6+4=10 \Rightarrow J(4,10)=0, u_{4}=0 \\
x_{5} & =10+0=10 \Rightarrow J(5,10)=0, u_{5}=0
\end{aligned}
$$

In summary the knapsack is loaded optimally as follows,

k	x_{k}	J_{k}	u_{k}
1	0	17	1
2	1	15	1
3	6	7	1
4	10	0	0
5	10	0	0

4. (a) The Bellman equation is given by

$$
\begin{equation*}
J(x)=\min _{u}\left\{f_{0}(x, u)+J(f(x, u))\right\} \tag{7}
\end{equation*}
$$

where,

$$
\begin{aligned}
f_{0}(x, u) & =\rho x^{2}+u^{2} \\
f(x, u) & =x+u
\end{aligned}
$$

Assume that the cost is on the form $J=p x^{2}, p>0$. Then the optimal control law is obtained by minimizing (??)

$$
\begin{aligned}
\mu(x) & =\underset{u}{\arg \min }\left\{f_{0}(x, u)+V(f(x, u))\right\}, \\
& =\underset{u}{\arg \min }\{\underbrace{\rho x^{2}+u^{2}+p(x+u)^{2}}_{H}\}, \\
H_{u} & =2 u+2 p(x+u), H_{u u}=2(1+p) \succ 0
\end{aligned}
$$

Therefore, $H_{u}=0$ gives the minimum,

$$
u^{*}=-p /(1+p) x
$$

Inserting u^{*} in (10),

$$
p x^{2}=\rho x^{2}+p^{2} /(1+p)^{2} x^{2}+p x^{2}(1-p /(1+p))^{2}=(\rho+p /(1+p)) x^{2}
$$

For this to hold for all x,

$$
p=\rho+p /(1+p)
$$

which has the positive solution

$$
p=\left(\rho+\sqrt{\rho^{2}+4 \rho}\right) / 2
$$

(b) Since $J_{0}(x)=0$, it follows that,

$$
J_{0}(x)=p_{0} x^{2} \text { with } p_{0}=0
$$

Assume that $J_{k}(x)=p_{k} x^{2}$, then

$$
J_{k+1}(x)=\min _{u}\left\{f_{0}(x, u)+J_{k}(f(x, u))\right\}=\min _{u}\left\{\rho x^{2}+u^{2}+p_{k}(x+u)^{2}\right\}
$$

As in (a), the minimum is obtained when the gradient of the expression in the parenthesis is zero, i.e.

$$
2 u+2 p_{k}(x+u)=0
$$

resulting in

$$
u=-p_{k} /\left(p_{k}+1\right) x=l_{k} x
$$

Back-substituting gives

$$
J_{k+1}(x)=\left(\rho+\frac{p_{k}}{p_{k}+1}\right) x^{2}
$$

Hence, $J_{k+1}(x)=p_{k+1} x^{2}$ if

$$
p_{k+1}=\rho+\frac{p_{k}}{p_{k}+1}
$$

(c) From(i) it follows that,

$$
p_{k} x^{2}=\rho x^{2}+\left(l_{k} x\right)^{2}+p_{k}\left(x+l_{k} x\right)^{2}
$$

and since this has to hold for all x, it follows that,

$$
p_{k}=\rho+l_{k}^{2}+p_{k}\left(1+l_{k}\right)^{2}
$$

Solving for p_{k} results in the desired recursion,

$$
p_{k}=\frac{\rho+l_{k}^{2}}{1-\left(1+l_{k}\right)^{2}}
$$

From (ii) it follows that,

$$
\begin{aligned}
\mu_{k+1}(x) & =\underset{u}{\arg \min }\left\{f_{0}(x, u)+J_{k}(f(x, u))\right\} \\
& =\underset{u}{\arg \min }\left\{\rho x^{2}+u^{2}+p_{k}(x+u)^{2}\right\}
\end{aligned}
$$

which is similar to the minimization in (b)and hence,

$$
\begin{aligned}
\mu_{k+1}(x) & =\frac{-p_{k}}{p_{k}+1} x \\
l_{k+1} & =\frac{-p_{k}}{p_{k}+1}
\end{aligned}
$$

(d) According to the following table, the policy-iteration method (c), converges much faster than the value-iteration method (b).

k	$p_{k}(b)$	$l_{k}(b)$	$p_{k}(c)$	$l_{k}(c)$
0	0	0	2.6842	-0.1000
1	0.5000	-0.3333	1.1128	-0.7286
2	0.8333	-0.4545	1.0018	-0.5267
3	0.9545	-0.4884	1.0000	-0.5005
4	0.9884	-0.4971	1.0000	-0.5000
5	0.9971	-0.4993	1.0000	-0.5000

