
Cryptography Lecture 12
Post-quantum cryptography



Public key cryptography rests on hardness of a mathematical
problem

• In RSA, the mathematical problem is factoring. Alice creates
N = pq where p and q are prime numbers, and publishes N (and
the encryption exponent e)

• If an eavesdropper can factor N, it is simple to calculate the
decryption exponent d

• The best classical factoring algorithms we have are O(e
3
√
n)

• Quantum computers are said to solve the problem much faster,
complexity is O(n3)



Quantum computers

• Quantum computers use the same information-encoding
technique as quantum cryptography

• But the similarities end quickly

• Quantum computers use quantum gates to perform calculations

Alice
Bob

X = 1

X = 0



Encoding of information into quantum systems

Coding HV (Horizontal-Vertical), +, encoding 0

Data 0 Data 1

Coding PM (Plus-Minus 45°), ×, encoding 1

Data 0 Data 1



Quantum Algorithms use quantum bits and quantum gates

• The qubit is a spin- 12 -system

• |↓〉 = |0〉 and |↑〉 = |1〉
• x = 0 or 1 becomes
|ψ〉 = a |0〉+ be iφ |1〉

• Gates are unitary maps, or reversible

• Hadamard gate

H :

{
|0〉 → |+〉 = |0〉+ |1〉
|1〉 → |−〉 = |0〉 − |1〉

6 ∃

∼

∼

∼
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Shor’s algorithm finds the period of a function f

• Remember that aφ(N) = 1 mod N (where φ is the totient function),
so the function f (x) = ax mod N is periodic

1, a, a2, ... , aφ(N)−1, aφ(N) = 1, a, a2, ... (mod N)

• Shor’s algorithm finds a period r (such that f (x + r) = f (x))

• The period can be used to find factors in N (how?)

• Shor’s algorithm needs O(n3) quantum operations

|0〉 /
m F U·ax (%N) F †

|1〉 /
n U·ax (%N)

U·ax (%N)



There aren’t any good quantum computers, . . . , yet

• Several giant projects are under way

• The above picture is from Chalmers, one of the participants of
Wallenberg Center for Quantum Technology



We will probably need to replace RSA with
Post-quantum(-computer) cryptography

• Don’t rely on factorization or discrete log

• Use a properly hard problem

• Candidates are NP-complete or even NP-hard problems (at least
as hard as NP-complete problems)

• But remember the failure of Knapsack crypto

• The terms "NP-complete" and "NP-hard" only refers to the hardest
instance of the problem

• In cryptography, average hardness is the important property
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McEliece or code-based cryptography (1978)

• Use Error-Correcting
Codes

• More precisely, use a
general linear ECC

• Code words are
vectors in Rn (simplest
example is binary
vectors)

• A linear code is such
that adding two code
words gives a third
code word

g1

g2

(0,0)
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McEliece or code-based cryptography (1978)

• Errors in transmission
gives random shifts

• "Decoding" or "Error
correction" is the same
as finding the closest
code word

• Efficient decoding
exists for known
families of ECC

• But decoding a general
linear ECC is NP-hard
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Mathematical notation

• Our code has 2k code words, each code word is n bits long, and
can correct t one-bit errors (t is given by the construction)

• Our code maps from k-bit strings to n-bit strings using a bit matrix
called generator matrix G

yt = xtG (mod 2)

• To each G , there is a decoding procedure (a function) we denote D

D(yt) = D(xtG ) = xt

• The decoding procedure can correct errors, so if z has less than k
ones,

D(yt + zt) = D(yt) = xt
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McEliece or code-based cryptography (1978)

• Use Error-Correcting Codes

• Efficient decoding exists for known families of ECC

• Decoding a general linear ECC is NP-hard

• Use a code from a known family, but randomize the code so that
the code can’t be identified

• Then only general-linear-ECC decoding is available

• But remember the failure of Knapsack crypto
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McEliece or code-based cryptography (1978)

• Bob chooses a “binary Goppa code” C (length n with 2k code
words, that corrects t errors), a generator matrix G and the
corresponding decoding algorithm D

• Bob also selects a random k × k binary invertible matrix S and a
random n × n permutation matrix P, and calculates Ĝ = SGP

• Bob makes Ĝ and t public, and keeps S , P, D (and G ) secret
• Alice encrypts m as ct = mtĜ + zt where z is a random n-bit string

with t bits set
• Bob decrypts c as

D(ctP−1)S−1 = D
(
(mtSGP + zt)P−1

)
S−1

= D(mtSG + ztP−1)S−1

= D(mtSG )S−1

= (mtS)S−1 = mt ,



Trapdoor one-way function candidate: randomized Goppa code
+ errors

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xtĜ + zt) from x

• Hard to invert: to calculate x from (xtĜ + zt)

The trapdoor is that with knowledge of S , P, and D it is easy to invert, to
calculate xt = D

(
(xtĜ + zt)P−1

)
S−1

Decoding a general linear code (Ĝ ) is NP-hard



McEliece or code-based cryptography (1978)

• The family of codes used turns out to be very important

• The binary Goppa codes used in the initial proposal are basically
the only family that works

• For example, Reed-Solomon codes enables a “structural attack,”
an efficient algorithm for randomized RS codes

• The best known general-linear-ECC decoder is “information set
decoding,” the initial key size 262 kbit gives ∼60 bits of security

• Current recommendation is 8.4 Mbit keys (!)

• On the positive side, system is faster than RSA



More recent candidate: Lattice problems

• A lattice in Rn is
defined by a basis gi
with k elements, k ≤ n

• It consists of the points

k∑
i=1

xigi = xtG , ∀xi ∈ Z

• The Shortest Vector
Problem (SVP) is to
find the shortest
nonzero vector in a
lattice
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The Shortest Vector Problem

• SVP is NP-hard

• Checking if there exists
a vector shorter than γ,
or GapSVPγ , is also
NP-hard

• But this is worst-case
hardness

• A generic instance may
have an efficient
solution

• Another knapsack
crypto?

g1

g2
(0,0) γ



The Shortest Vector Problem

• GapSVPγ is NP-hard,
worst-case complexity

• The way forward is to
randomize the lattice

• Problem is, how do we
randomize the basis?

• No upper limit to ||gi ||
• No simple link between

properties of the basis,
γ, and instance
complexity

g1

g2
(0,0) γ



Reformulate: Mod-q-vector problems

• Instead use m vectors hi with n coordinates mod q, both m and
q > n

• An Integer Solution is a nontrivial solution to the equation

m∑
i=1

hizi = Hz = 0 mod q

• Gaussian elimination works, if no restrictions are added

• The Short Integer Solution problem (SIS) is to find a “short”
nonzero solution (such that ||z|| < β)



Reformulate: Error-correcting codes (mod q)

• Compare with
error-correcting codes

• Code words are
solutions to the parity
check equation

Hz = 0 mod q

• An error is detected if
the syndrome is
nonzero

• An SIS solution is a
short code word z

(0,0)
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Reformulate: Short Integer Solution problem

• SIS is almost “GapSVP
mod q”

• For large β Gaussian
elimination gives an
efficient solution

• For small β there are
no solutions

• Perhaps there is a
region in between
where the problem is
hard, on average?

(0,0)

(0,q)

(q,0)

(q,q)
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The Short Integer Solution problem is hard on average

• Use m ≥ n log q and
β ≥
√
m

• Problem is trivial if
β ≥ q, a common
choice is q ≈ n3 � β

• Solving SISβ for
uniformly random H
with high probability

⇒
solving GapSVPβ

√
n

with probability
exponentially close to 1 (0,0)

(0,q)

(q,0)

(q,q)

β



SIS hash function (Ajtai 1996)

• Let m ≥ n log q, choose random n-by-m matrix H of integers
mod q, and let

hH(x) = Hx

• The hash function hH from bitstrings length m to bitstrings length n
is collision-resistant

• A collision hH(x) = hH(x′) implies that H(x− x′) = 0

• Then z = x− x′ is a solution to SIS√m, because ||z || ≤
√
m

• If it is easy to find collisions, it is easy to solve SIS√m
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How to choose random H that has a short solution

• It is simple to choose a random matrix mod q, but that does not
guarantee existence of a short solution

• The trick is to use a random matrix H and a random vector x, and
then generate a larger matrix H with a short solution

• The process is called “reducing x modulo the lattice”

• Let m = m − 1 ≥ n log q and draw uniform random n ×m matrix H
and binary m-element vector x

• Add a column to H and a row to x,

H =
[
H| − hH(x)

]
=
[
H| − Hx

]
, x =

[
x
1

]
• Then ||x|| ≤

√
m, and Hx = Hx− Hx = 0
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What is the distribution of H?

• H and x are uniform (mod q and mod 2), so what about H?

• Observation: hH is not only collision resistant, the parameter H
indexes a Universal-2 hash function family

• Leftover hash lemma: If hH is a Universal-2 hash function family, H
is uniform and x has high min-entropy, then the pair H, hH(x) is
close (in statistical distance) to being uniform, i.e.,

A =
[
H| − hH(x)

]
s
≈ uniform
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(Remember:) (Trapdoor) One-way functions

A (trapdoor) one-way function is a function that is easy to compute but
computationally hard to reverse. Examples:

• RSA (factoring)

• Knapsack (NP-complete but insecure with trapdoor)

• Diffie-Hellman + ElGamal (discrete log)

• EC Diffie-Hellman + EC ElGamal (EC discrete log)

The hash function family {hH} is Universal-2, so with H (almost)
uniformly distributed, hash functions are collision resistant
(⊂ one-way-hash), so we have

• Linear random hash mod q (SIS)

Actually, this is the only one-way (hash) function used in all of lattice
cryptography



Learning With Errors (Regev 2005)

• Use m vectors gi with n coordinates mod q, both m and q > n

• You are now given noisy data on the form

ct = stG + et , or ci = stgi + ei =
m∑
j=1

sjgij + ei , mod q

• The “noise” e is normally integer-Gaussian, stdev αq >
√
n

−15 −10 −5 0 5 10 15
0.00

0.02

0.04

ei

p(ei )

• Learning With Errors (LWE) is the mathematical problem to find s



Learning With Errors

• LWE: Find s given
noisy data on the form
ct = stG + et

• Decision-LWE (DLWE):
Is there an s so that c
has the distribution of
stG + et?

• (D)LWE is NP-hard

• Solving (D)LWE in the
average case

⇒
solving (D)LWE in the
hard case

(0,0)

(0,q)

(q,0)

(q,q)

stG

ct



Learning With Errors

• DLWE: is it possible to
decode? (NP-hard)

• Solving DLWE in the
average case

⇒
solving DLWE in the
hard case

• We are still relying on
the hardness of
decoding general linear
codes (0,0)

(0,q)

(q,0)

(q,q)

stG

ct



Example of cryptosystem with LWE (GPV 2008)

• Bob draws a random n ×m matrix G mod q and a random m-bit

string x, and sets G =
[
G | − hG (x)

]
=
[
G | − Gx

]
and x =

[
x
1

]
, so

that Gx = 0

• Bob makes G public and keeps x secret

• Alice draws a random n-integer s and random integer-Gaussian e
(mod q), and encrypts the single bit b as
ct = stG + et + (0, 0, ..., b)bq/2c

• Bob decrypts c as

ctx = stGx+ etx+ bbq/2c = etx+ bbq/2c ≈ bq/2



Security of example cryptosystem with LWE (GPV 2008)

• Secret key is x, public key is G =
[
G | − hG (x)

]
=
[
G | − Gx

]
• Eve can’t recover x efficiently, because then SIS would be simple

to solve

• Ciphertext is ct = stG + et + (0, 0, ..., b)bq/2c
• If b = 0 then c is distributed as stG + et

If b = 1 then no s makes c distributed as stG + et

• If Eve can recover b, she can also solve DLWE (“Is there an s so
that. . . ?”)

• But DLWE is hard (on average) so cryptosystem is secure



McEliece vs LWE

McEliece:

• Security rests on hardness of decoding general linear code

• Encryption is into a code word, ct = mtĜ + zt

• Uses random code from one particular subfamily of codes

• Choice of code family is crucial for security

LWE-based encryption:

• Security rests on hardness of decoding general linear code

• Encryption is into the noise, ct = stG + et + (0, 0, ..., b)bq/2c
• Uses random general linear code

• Average case hardness is the same as hardest case



(Trapdoor) One-way functions

A (trapdoor) one-way function is a function that is easy to compute but
computationally hard to reverse. Examples:

• RSA (factoring)

• Knapsack (NP-complete but insecure with trapdoor)

• Diffie-Hellman + ElGamal (discrete log)

• EC Diffie-Hellman + EC ElGamal (EC discrete log)

• Lattice crypto (LWE, SIS, DLWE)

We also have a strongly collision-resistant hash function

• Linear random hash mod q (SIS)


