
Cryptography Lecture 11
Bit commitment, zero knowledge,
secret sharing, games over the phone



Bit commitment

• Alice wants to commit to a value of a bit b, such as the outcome of
a Hockey game the next weekend

• Her intent is to show Bob she can predict the outcome, but she
does not want to tell Bob how, or what the result is (so that he
won’t reduce Alice’s winnings)

• But nonetheless she wants to give Bob something, that he can use
to verify that she knew, after the game has been played



Bit commitment, using discrete log

• Alice will base her commitment scheme on discrete logs, so sets
up like ElGamal: a prime p and primitive root α and makes them
public

• She now chooses a random x whose second bit is b, and sends
β = αx to Bob

• It is easy to compute discrete log mod 2
• but hard to compute discrete log mod 4 (see the book)

• When Alice reveals the value x to Bob, he can check that αx and β
are the same

• This will work with any one-way function (typically you will want to
use a strongly collision-resistant hash function)



Zero knowledge

• A “zero-knowledge” scheme is intended to convince someone that
you have certain knowledge, without giving the knowledge to this
someone

• The standard example is that
Peggy claims to know how to
open a door inside a tunnel
system

• She wants to convince Victor
that she can do this, without
telling Victor how to open the
door



Zero knowledge

• A “zero-knowledge” scheme is intended to convince someone that
you have certain knowledge, without giving the knowledge to this
someone

1. Peggy enters, while Victor
waits outside

2. Victor goes to the intersection
and calls out “left” or “right”

3. Peggy exits from the correct
path

4. If this happens enough times,
Victor is convinced that Peggy
can open the door
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Zero knowledge

• A “zero-knowledge” scheme is intended to convince someone that
you have certain knowledge, without giving the knowledge to this
someone

• A third person cannot be
convinced that Peggy can
open the door

• It doesn’t even help to have a
video of everything that Victor
sees

• This is known as an interactive
protocol



Zero-knowledge cut-and-choose

• The classic cut-and-choose

1. Peggy cuts the cake in half
2. Victor chooses one of the halfs for himself
3. Peggy takes the remainders

• The cave&door protocol works because Peggy cannot guess
which path Victor will ask for, so she only has 50% chance of
fooling him

• Repeating 10 times reduces Peggy’s chance to fool Victor to
2−10 ≈ 1/1000



Zero-knowledge example,
√
t mod n

• Peggy claims to know a square root s of t mod n = pq, where p
and q are large primes (efficiently solving for s is equivalent to
efficiently factoring n)

1. Peggy uses a random number r , computes x = r2 and sends
x to Victor

2. Victor asks either for the square root of x , or the square root
of xt

3. If Victor asked for the square root of x , Peggy lets y = r .
If he asked for the square root of xt, Peggy lets y = rs.
She now returns y to Victor

4. Victor checks that y2 = x or y2 = xt depending on what he
asked for

5. If Peggy can do this enough times (she must use different
random numbers r each time), Victor will conclude that Peggy
knows s, the square root of t
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Zero-knowledge example,
√
t mod n, cheating

• Peggy claims to know a square root s of t mod n = pq, where p
and q are large primes (efficiently solving for s is equivalent to
efficiently factoring n)

1. Peggy uses a random number r , computes x = r2 and sends
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2. Victor asks either for the square root of x , or the square root
of xt

3. If Victor asked for the square root of x , Peggy lets y = r .
If he asked for the square root of xt, Peggy doesn’t know s
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4. Victor checks that y2 = x or y2 = xt depending on what he
asked for

5. If Peggy can do this enough times (she must use different
random numbers r each time), Victor will conclude that Peggy
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Zero-knowledge example,
√
t mod n, cheating

• Peggy claims to know a square root s of t mod n = pq, where p
and q are large primes (efficiently solving for s is equivalent to
efficiently factoring n)

1. Peggy uses a random number r , computes x = r2t−1 and
sends x to Victor

2. Victor asks either for the square root of x , or the square root
of xt

3. If Victor asked for the square root of x , Peggy doesn’t know s
and must guess y = rs−1. If he asked for the square root of
xt, Peggy lets y = r . She now returns y to Victor

4. Victor checks that y2 = x or y2 = r2 = xt depending on what
he asked for

5. If Peggy can do this enough times (she must use different
random numbers r each time), Victor will conclude that Peggy
knows s, the square root of t



The Feige-Fiat-Shamir identification scheme

• Peggy claims to know square roots si of ti mod n = pq, where p
and q are large primes

1. Peggy uses a random number r , computes x = r2 and sends
x to Victor

2. Victor asks for the square root of xtb11 tb22 ... tbnn ,
for bi in {0, 1}

3. Peggy computes y = rsb11 sb22 ... sbnn and sends y to Victor
4. Victor checks that y2 = xtb11 tb22 ... tbnn
5. If Peggy can do this enough times (she must use different

random numbers r each time), Victor will conclude that Peggy
knows si , the square roots of ti



Numbers for Feige-Fiat-Shamir identification
• Peggy is a customer at Victor’s bank. She wants to identify herself

electronically
• To generate numbers to be used in the scheme, Peggy and Victor

agree on the following
1. Peggy uses her name and personnummer, and a publicly known

hash function, she also chooses (secret) p and q and gives Victor
n = pq (as in RSA)

2. She concatenates a counter to the end of the data, and hashes the
resulting number, for a few values of the counter. Victor does the
same

3. Roughly half the numbers have square roots mod p, and half the
numbers mod q. This means that rougly a quarter of the numbers
have square roots mod n. Knowing p and q, Peggy can efficiently
calculate these

• They can now use Feige-Fiat-Shamir identification
• An eavesdropper on a card transaction will learn nothing about the

square roots that Peggy uses



Zero-knowledge example,
√
t mod n

• Peggy claims to know a square root s of t mod n = pq, where p
and q are large primes

1. Peggy uses a random number r , computes x = r2 and sends
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2. Victor asks either for the square root of x , or the square root
of xt
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knows s, the square root of t



Zero-knowledge, formal setup

• Peggy knows the solution to a hard mathematical problem, such
as the pre-image to a one-way function output

1. Peggy uses a random number to transform the problem into a
different, but equally hard mathematical problem. She
commits to the solution of the new instance (using bit
commitment) and reveals it to Victor

2. Victor asks Peggy to either a) prove that the two problems are
isomorphic, or b) provide the solution of the second problem

3. If Peggy can do this enough times, Victor will conclude that
Peggy can solve the original problem

• Peggy is known as the prover, while Victor is known as the verifier

• It is important that Peggy’s and Victor’s choices is random (to the
other participant), otherwise cheating is possible
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Digital signatures are not Zero-knowledge

• Either Alice chooses the message, and gives Bob message and
signature. In this case, there is no (random) challenge from Bob.

• Bob is not convinced. Messages have no structure here, so
how does he know Alice did not select the signature first and
used the public key to generate the message?

• Or Bob chooses the message and asks Alice to sign, but then,
there is no (random) commitment by Alice

• Here the danger is that Bob could carefully select messages
to extract information on the secret

• In proper zero knowledge protocols, new randomness is added at
each instance, so that no information on the secret is revealed to
the verifier



Zero-knowledge, formal setup
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Secret sharing

• Imagine you make a lot of money on the latest Iphone app you
wrote

• You live happily, but make plans for the future: at some point your
(less trustworthy) children are going to inherit

• You want to force them to cooperate to open the safe

• This is easily done by giving them each one number in the
three-number combination

• If you happen to have, say, seven children, or want to give them
less information (not making exhaustive search easier), you need
to be more sophisticated



Secret splitting

• You want to split a secret message m between Alice and Bob so
that they need to cooperate to read it

• The simplest way to do this is to take a random r , give r to Alice
and m − r to Bob

• They must now add their numbers to find m



Secret splitting

• You want to split a secret message m between Alice and Bob so
that they need to cooperate to read it

• The simplest way to do this is to take a random r , give r to Alice
and m − r to Bob

• If you want to do this among n people, give n − 1 of them random
numbers, and the last one m − r1 − r2 − ...− rn−1

• They must add all their shares to find m



More sophisticated secret sharing

• We want to share the secret among n persons so that any pair of
them can retrieve m

• Create the line (x , kx +m),
that passes the point (0,m)

• Give each of the n persons
one point on the line

• They need two points to
reconstruct the line, to find
(0,m)

• One point is not enough

100 x

y
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Treshold scheme (a (3, n) treshold scheme)

• We want to share the secret among n persons so that any three of
them can retrieve m

• Create a second-degree
polynomial that passes the
point (0,m)

• Give each of the n persons
one point on the line

• They need three points to
reconstruct the line, to find
(0,m)

• Two points are not enough 100 x

y

y = cx2 + kx +m

Alice
Bob Charlie

Diana



A (t, n) treshold scheme

• We want to share the secret among n persons so that any t of
them can retrieve m

• Create a t − 1’st-degree
polynomial that passes the
point (0,m)

• Give each of the n persons
one point on the line

• They need t points to
reconstruct the line, to find
(0,m)

• t − 1 points are not enough 100 x

y



Shamir (t, n) treshold scheme

• We want to share the secret among n persons so that any t of
them can retrieve m

• Choose a prime p larger than n and larger than m, and create a
(random) polynomial

s(x) = m + s1x + s2x
2 + ... + st−1x

t−1 mod p

• Give each of the n persons one unique point on the line

• They now need t points to reconstruct the curve, because this will
give t equations for the t unknowns m, s1, s2, . . . , st−1



Lagrange interpolation

• Given t points, let

lk(x) =
t∏

i=1
i 6=k

x − xi
xk − xi

mod p

• The Lagrange interpolation
polynomial is

p(x) =
t∑

k=1

yk lk(x) 100 x

y



Lagrange interpolation

• Given x1 = 80, x2 = 150, x3 = 270, and x4 = 390, let
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· x − x3
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Lagrange interpolation

• Given x1 = 80, x2 = 150, x3 = 270, and x4 = 390, let
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Lagrange interpolation

• Given x1 = 80, x2 = 150, x3 = 270, and x4 = 390, let
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Lagrange interpolation

• Given x1 = 80, x2 = 150, x3 = 270, and x4 = 390, let

l4(x) =
x − x1
x4 − x1

· x − x2
x4 − x2

· x − x3
x4 − x3

mod p

• The Lagrange interpolation
polynomial is
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Lagrange interpolation

• Given x1 = 80, x2 = 150, x3 = 270, and x4 = 390, let
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Blakley secret sharing

• Another way to generalize the linear function we started with is to
go to higher dimension

• Use intersecting hyperplanes
in t dimensions instead

• Almost the same as Shamir’s
polynomial secret sharing



Blakley secret sharing

• If x0 is the secret, choose random y0, z0 (mod p)

• For each share, choose random ai and bi and let
ci = aix0 + biy0 − z0

• Each share is a Hyperplane
a1x + b1y − z = c1 ←
a2x + b2y − z = c2 ←
a3x + b3y − z = c3 ←



Blakley secret sharing

• Each share is a Hyperplane
a1x + b1y − z = c1 ←
a2x + b2y − z = c2 ←
a3x + b3y − z = c3 ←

• Three unknowns: need three equations to solve for the unknown
point (x0, y0, z0)

• To solve the system, the equations need to be linearly independent



Uneven sharing
• Suppose you need two chartered accountants or four ordinary

clerks from the economy department or one chartered accountant
and two clerks to sign a document

• Create a (4, n) threshold scheme
• Give each chartered accountant two shares

100 x

y



Uneven sharing

• Suppose you need at least four employees from company A and
three from company B to retrieve a secret

• A (7, n) threshold scheme won’t work since 7 people from
company A could cooperate

• Create a (4, n) threshold scheme for company A, and a (3, n)
scheme for company B

• Use the initial m = mA +mB mod p scheme we started with

100 x

y

100 x

y



Coin tossing over the phone

• Alice and Bob want to toss coins over telephone to decide who
gets something they both want. To set up the system, Alice
chooses p and q prime (congruent to 3 mod 4) and sends Bob
n = pq

• Bob chooses a random x < n/2 and sends Alice u = x2 mod n

• Alice computes the four roots (easy if you know p and q, hard if
not), at random chooses v as one of the two < n/2 and sends v to
Bob

• If v = ±x mod n, Bob sends “OK, you win” to Alice. If v 6= x , Bob
sends “I win” and x to Alice, to prove he knew it (he can now factor
n; Alice should check that x2 = u mod n)



Poker over the telephone, discrete log

• Alice and Bob want to play Poker over the telephone; they agree
on a large prime p, represent the cards using 52 numbers, and
choose secrets α and β so that gcd(α, p − 1) = 1 = gcd(β, p − 1)

• Bob encrypts each card by raising it to the power β and
sends the set to Alice

• Alice chooses five cards for herself and encrypts them with α,
and five cards for Bob. She sends all ten cards to Bob

• Bob decrypts the cards by raising it to the power β−1 mod
p − 1, and sends back Alice’s cards

• Alice decrypts her cards

• Both keep the encrypted version of the other’s cards

• Discarded cards are encrypted and sent to the other

• To end the game, they claim their hands and prove them by
revealing their keys
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on a large prime p, represent the cards using 52 numbers, and
choose secrets α and β so that gcd(α, p − 1) = 1 = gcd(β, p − 1)

• Encryption as c = mk mod p and decryption as m = c1/k mod p

• This is a system with private keys only

• Security depends on discrete log complexity

• But in this system, you can cheat



Poker over the telephone, discrete log

• Alice and Bob want to play Poker over the telephone; they agree
on a large prime p, represent the cards using 52 numbers, and
choose secrets α and β so that gcd(α, p − 1) = 1 = gcd(β, p − 1)

• Encryption as c = mk mod p and decryption as m = c1/k mod p
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Discrete log poker, cheating

• A quadratic residue mod p is a number that is a square mod p

r (p−1)/2 =

{
+1 mod p if r is a quadratic residue
−1 mod p otherwise

• And since α and β are odd (no nontrivial factors common with
p − 1), this does not change under encryption

c(p−1)/2 = (mα)(p−1)/2 = (m(p−1)/2)α = m(p−1)/2 mod p

• There is information still available in the ciphertext



Poker over the telephone, with RSA

• Alice and Bob want to play Poker over the telephone; they both set
up for RSA

• Alice encrypts each card with her public key and sends the
set to Bob

• Bob chooses five cards for himself and encrypts them with his
public key, and five cards for Alice. He sends all ten cards to
Alice

• Alice decrypts the cards using her private key, and sends
back Bob’s cards

• Bob decrypts his cards

• Both keep the encrypted version of the other’s cards

• Discarded cards are encrypted and sent to the other

• To end the game, they claim their hands and prove them by
revealing their private keys



RSA poker, cheating

• Alice and Bob want to play Poker over the telephone; they both set
up for RSA

• Alice’s encryption as c = mea mod na and decryption as m = cda

mod na

• This is a system with public keys, or?

• Security depends on complexity of factoring

• Can you cheat in this system?
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Bit commitment, zero knowledge, secret sharing, games over the
phone

• Bit commitment is used to convince someone that you have
certain knowledge, without giving the knowledge to this someone
— uses one-way functions

• A zero-knowledge scheme is also used to convince someone that
you have certain knowledge, without giving the knowledge to this
someone — uses a random commitment and a random challenge,
not one-way functions

• Secret sharing is used to divide a secret into pieces so that all (or
at least t) pieces are needed to read the secret

• Coin tossing or poker over the phone uses bit (or card)
commitment to convince participants that it is a fair game


