
Cryptography Lecture 7
RSA continued, Knapsack, Diffie-Hellman, ElGamal



Public key cryptography

Asymmetric key systems can be used in public key cryptography

Public
Encryption

Key

Secret
Decryption

Key

Anyone Bob

Eve

Encrypt Decrypt



Trapdoor one-way functions

• A trapdoor one-way function is a function that is easy to compute
but computationally hard to reverse

• Easy to calculate f (x) from x
• Hard to invert: to calculate x from f (x)

• A trapdoor one-way function has one more property, that with
certain knowledge it is easy to invert, to calculate x from f (x)

• There is no proof that trapdoor one-way functions exist, or even
real evidence that they can be constructed. Examples:

• A few examples will follow (anyway)



Trapdoor one-way function candidate: exponentiation modulo
n = pq

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

We have shown (using the Chinese remainder theorem) that solving
x2 = c mod pq is equally hard as factoring n = pq.



Choose p and q: Test for primality

Theorem (Fermat’s little theorem): If n is prime and a ̸= 0 mod n,
then an−1 = 1 mod n

Fermat primality test: Take a random a ̸= 0,±1 mod n.
If an−1 ̸= 1, then n is composite, otherwise n is prime with high
probability



Choose p and q: Test for primality

Miller-Rabin primality test: To test n, take a random a ̸= 0,±1 mod n,
and write n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime (because
an−1 = 1, remember the Fermat primality test)

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
(because bj ̸= ±1, so we can factor n)
if this is −1 then stop: n is probably prime
(because an−1 = 1, Fermat again)

• Repeat. If you reach bk then n is composite
(if bk = +1 remember that bk−1 ̸= ±1 so we can factor n,
otherwise bk = an−1 ̸= 1, remember the Fermat primality test)



Choose p and q: Avoid simple factorization

• The Fermat factorization method uses
n = x2 − y2 = (x + y)(x − y)

• Calculate n+ 12, n+ 22, n+ 32, n+ 42, n+ 52, . . . , until we reach a
square, then we are done.

Example:
295927 + 32 = 295936 = 5442, so 295927 = 541 · 547

• This is unlikely to be a problem for a many-digit n = pq, but usually
p and q are chosen to be of slightly different size, to be on the safe
side



Choose p and q: Avoid simple factorization

The Pollard p − 1 factorization method uses b = aB! mod n for chosen
a and B. Calculate d = gcd(b − 1, n). If d is not 1 or n, we have factored
n.

This works if one prime factor p of n is such that p − 1 has only small
factors. If B is big enough, B! = k(p − 1), and b = aB! = 1 mod p Then,
b − 1 contains a factor p, as does n.

Solution: choose p and q so that p − 1 and q − 1 has at least one large
prime factor



Rivest Shamir Adleman (1977)

• Bob chooses secret primes p and q, and sets n = pq

• Choose primes p and q using, say, the Miller-Rabin test
• Choose primes of slightly different size
• Choose p and q so that p − 1 and q − 1 has at least one large

prime factor

• Bob chooses e with gcd(e,ϕ(n)) = 1

• Bob computes d so that de = 1 mod ϕ(n)

• Bob makes n and e public but keeps p, q and d secret

• Alice encrypts m as c = me mod n

• Bob decrypts c as m = cd mod n



What about factoring?

Miller-Rabin primality test: To test n, take a random a ̸= 0,±1 mod n,
and write n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime (because
an−1 = 1, remember the Fermat primality test)

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
(because bj ̸= ±1, so we can factor n)
if this is −1 then stop: n is probably prime
(because an−1 = 1, Fermat again)

• Repeat. If you reach bk then n is composite
(if bk = +1 remember that bk−1 ̸= ±1 so we can factor n,
otherwise bk = an−1 ̸= 1, remember the Fermat primality test)



What about factoring?

If n is not prime, assume you know r such that all x ̸= 0 mod n give
x r = 1 mod n (in RSA, r = ed − 1)

Universal exponent factoring: Take a random a with 1 < a < n − 1,
and write r = 2km with m odd

• Let b0 = am, if this is ±1 then stop and try another a

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
and gcd(bj − 1, n) is a factor of n
if this is −1 then stop and try another a

• Repeat. If you reach bk = ar = 1 then n is composite
and gcd(bk−1 − 1, n) is a factor of n



What about factoring?

• If n is not prime, assume you know r such that all x ̸= 0 mod n give
x r = 1 mod n (in RSA, r = ed − 1)

• Then, Universal exponent factoring will work with high probability

• So if you know both e and d in an RSA system, then you can factor
n efficiently



Trapdoor one-way function example: exponentiation modulo pq

This function is easy to compute but computationally hard to reverse,
unless you have certain (secret) knowledge

• It is easy to calculate (xe mod n) from x

• It is hard to invert: to calculate x from (xe mod pq), equally hard as
factoring n = pq

• It is easy to invert if you have the decryption exponent d (and then
factoring of pq is easy too)



Factoring with the Quadratic Sieve

Theorem: Suppose there exist integers x and y with
x2 = y2 mod n but x ̸= ±y mod n. Then n is composite,
and gcd(x − y , n) gives a nontrivial factor of n.

So find x and y that has the same square mod n

Method: take numbers that have squares that are small modulo n, and
hope that these squares (mod n) combine together to a square.



Factoring with the Quadratic Sieve

Method: take numbers that have squares that are small modulo n, and
hope that these squares (mod n) combine together to a square.

Example: 412 = 32 mod 1649,

432 = 200 mod 1649,

The numbers 32 and 200 are not square, but the product

32 · 200 = 6400 = 802

and 41 · 43 = 114 mod 1649

(41 · 43)2 = 1142 = 802 mod 1649.

Finally, gcd(114− 80, 1649) = gcd(34, 1649) = 17, so 1649 = 17 · 97



Factoring with the Quadratic Sieve

Method: take numbers that have squares that are small modulo n, and
hope that these squares (mod n) combine together to a square.

Problem: finding the numbers. The book suggests trying
√
in + j

rounded down, for small j and various i . This will work sometimes, but
using more sophisticated methods will give you the “Quadratic sieve”,
and eventually, the “Number field sieve”



Key length
Table 7.4: Security levels (symmetric equivalent)

Security Protection Comment
(bits)

32 Real-time, individuals Only auth. tag size
64 Very short-term, small org Not for confidentiality in new systems
72 Short-term, medium org

Medium-term, small org
80 Very short-term, agencies Smallest general-purpose

Long-term, small org < 4 years protection
(E.g., use of 2-key 3DES,
< 240 plaintext/ciphertexts)

96 Legacy standard level 2-key 3DES restricted to 106 plain-
text/ciphertexts,
≈ 10 years protection

112 Medium-term protection ≈ 20 years protection
(E.g., 3-key 3DES)

128 Long-term protection Good, generic application-indep.
Recommendation, ≈ 30 years

256 ”Foreseeable future” Good protection against quantum computers
unless Shor’s algorithm applies.

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”



Key length

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”



Attacks: Short plaintexts enable a “meet-in-the-middle” attack

A common use is to transmit keys for use in AES or DES

An RSA “block” can have, say ∼ 200 (base 10) digits. If m ≈ 1019 (a
DES key), then Eve can make two lists:

cx−e and y e (mod n) for x and y < 109

a match between the two lists obeys

c = (xy)e mod n, or xy = m

Simple fix: attach random bits before message. More advanced fix:
RSA-OAEP (Optimal Asymmetric Encryption Padding, recommended
by ECRYPT), see the book



Attacks: Partial information on p or d enable efficient factoring

Theorem: Let n = pq have m digits. If we know the first m/4 or the last
m/4 digits of p, we can efficiently factor n

• Don’t use “simplified” schemes to find primes

Theorem: Suppose (n, e) is an RSA public key and n has m digits. If
we know the last m/4 digits of d , we can factor n in time linear in e log e

• Even little information on d enables factorization



Attacks: Low exponent

• The encryption exponent e is often chosen small to enable fast
encryption (a popular value is 65337). Don’t do the same choice
for d .

• Obviously, d should not be reachable by brute force, but there are
other requirements too. . .

Theorem: Suppose q < p < 2q, e, d , and n as in RSA. If
d < (n1/4)/3, then n can be factored efficiently

• One possibility is to choose d first and then find e



Attacks: Timing

• Even if you choose parameters secure according to all advice,
your implementation may still be weak

• The ”fast” modular exponentiation should not be used directly

cd
c

d

m



Attacks: Timing

• Even if you choose parameters secure according to all advice,
your implementation may still be weak

• The ”fast” modular exponentiation should not be used directly

r1 = c
r2 = r21

or
r2 = r21 c

r3 = r22
or

r3 = r22 c

. . .c

d1 = 1 d2 d3

r1 r2 m

d = d1d2d3 ... dk

• The time the decryption takes is public in many systems



Attacks: Timing

r1 = c
r2 = r21

or
r2 = r21 c

r3 = r22
or

r3 = r22 c

. . .c

d1 = 1 d2 d3

r1 r2 m

d = d1d2d3 ... dk

• Eve doesn’t know what d2, d3, . . . are
• Eve does know what r1 = c is
• Eve knows the system: the time it takes for the system to multiply

r21 = c2 with c.
• The delay in the second box will depend on c and d2



Attacks: Timing

r1 = c
r2 = r21

or
r2 = r21 c

r3 = r22
or

r3 = r22 c

. . .c

d1 = 1 d2 d3

r1 r2 m

d = d1d2d3 ... dk

• The delay in the second box will depend on c and d2

• If d2 = 0, there is no delay

• If d2 = 1, the delay is the time it takes for the system to multiply
r21 = c2 with c , which depends on c.



Attacks: Timing

Delay multiplying r21 and c

To
ta

ld
el

ay

Delay multiplying r21 and c

To
ta

ld
el

ay

• The delay in the second box will depend on c and d2

• If d2 = 0, there is no delay

• If d2 = 1, the delay is the time it takes for the system to multiply
r21 = c2 with c , which depends on c.



Attacks: Timing

Delay multiplying r21 and c

To
ta

ld
el

ay

Delay multiplying r21 and c

To
ta

ld
el

ay

• If there is positive correlation between the delay of multiplying r21
and c and the total delay, then d2 = 1

• Eve now knows d2, and consequently r22 = r21 c
d2

• Lather, rinse, repeat
• Avoid timing attacks by using constant-time implementation, or

“blinding”, see the book



Rivest Shamir Adleman (1977)

• Bob chooses secret primes p and q, and sets n = pq

• Bob chooses e with gcd(e,ϕ(n)) = 1

• Bob computes d so that de = 1 mod ϕ(n)

• Bob makes n and e public but keeps p, q and d secret

• Alice encrypts m as c = me mod n

• Bob decrypts c as m = cd mod n

• Choose primes p and q wisely, and implement wisely



Trapdoor one-way functions

• A trapdoor one-way function is a function that is easy to compute
but computationally hard to reverse

• Easy to calculate f (x) from x
• Hard to invert: to calculate x from f (x)

• A trapdoor one-way function has one more property, that with
certain knowledge it is easy to invert, to calculate x from f (x)

• There is no proof that trapdoor one-way functions exist, or even
real evidence that they can be constructed. Our example is xe

mod pq.

• What about harder computational problems, say NP problems?



The right kind of problem?

• NP (Nondeterministic Polynomial time)-problems are an important
concept in complexity theory

• The necessary effort to solve any problem is usually approximated
as some expression involving the size of a parameter

• In cryptography we want to know that there is no better attack
method than exhaustive search, which grows exponentially with
the size of the key

• Problems that can be solved in polynomial time lie in a smaller
class of problems, P

• The problems believed to be in NP but not in P do not have
efficient solutions, the known algorithms grow faster than any
polynomial expression of the size of a problem parameter



The class of NP-complete problems

• NP-complete problems are the hardest problems in the NP
complexity class: any other NP problem can be rewritten as a
NP-complete problem in polynomial time

• It is unknown whether P̸=NP. If an NP-complete problem can be
solved in polynomial time, then P=NP

• One example of a NP-complete problem is “the knapsack problem”

• Sounds like a good problem to base cryptography on. . .



The knapsack problem, original

• A travelling salesman wants to pack as many items as possible in
his knapsack (=bag)

• All items have different sizes

• How can he find the subset that maximizes the total size into the
knapsack?

• A physical knapsack is 3D, so let us simplify into one dimension



The one-dimensional knapsack

You are given a set of numbers, all different,

D = {d1, d2, ... , dn},

and the sum c of the elements in a subset M of D, but the subset M is
unknown to you

The knapsack problem is now to deduce what elements are in M (what
bits are set in the message)



Example of a one-dimensional knapsack problem

D = {62, 93, 81, 88, 102, 37}, c = 280

In general, solving this is an NP-complete problem.

Methods that solve it include, for example, exhaustive search. In this
case, 62+93+88+37=280

The subset M = {62, 93, 88, 37} (the message is 110101)



The one-dimensional knapsack

You are given a set of numbers, all different,

D = {d1, d2, ... , dn},

and the sum c of the elements in a subset M of D, but the subset M is
unknown to you

The knapsack problem is now to deduce what elements are in M (what
bits are set in the message)

If D is “superincreasing”, the problem is simple to solve, but the
knapsack problem in its general version is NP-complete



Example of a superincreasing one-dimensional knapsack
problem

A superincreasing knapsack is ordered, and each element is larger
than the sum of the previous

Ds = {2, 3, 6, 13, 27, 52}, cs = 70

Solution:
52 is less than 70, so 52 must be in M, remains 18
27 is more than 18, so 27 cannot be in M, remains 18
13 is less than 18, so 13 must be in M, remains 5
6 is more than 5, so 6 cannot be in M, remains 5
3 is less than 5, so 3 must be in M, remains 2
2 is what remains, so 2 must be in M, solution found

The subset M = {2, 3, 13, 52} (the message is 110101)



Superincreasing and ordinary one-dimensional knapsacks

Examples:
Ds = {2, 3, 6, 13, 27, 52}, cs = 70

D = {62, 93, 81, 88, 102, 37}, c = 280

Is it possible to map one into the other?



Trapdoor: make an ordinary knapsack out of a superincreasing
one

Example:
Ds = {2, 3, 6, 13, 27, 52}

Transform knapsack: Take two numbers s and u with s >knapsack total
and gcd(u, s) = 1, and multiply each element with u mod s

In our example, use s = 105 and u = 31

D = { 2 · 31 = 62, 3 · 31 = 93, 6 · 31 = 81,
13 · 31 = 88, 27 · 31 = 102, 52 · 31 = 37 }

The knapsack problem is NP-complete, so use the new knapsack D as
encryption key

In this example c = 280 (110101)



Trapdoor: make an ordinary knapsack out of a superincreasing
one

The (secret) decryption key is the superincreasing knapsack D and the
modular transformation

Decryption is now simple. Divide the cryptotext c with u mod s (possible
since gcd(u, s) = 1)

cs = c/31 = 280/31 = 280 · 61 = 70 mod 105,

then use the superincreasing knapsack to read off the value

Ds = {2, 3, 6, 13, 27, 52}, cs = 70, M = {2, 3, 13, 52} (110101)



Weakness of the knapsack

• You can recreate Ds from D using u and s

• The weakness is that any u and s that creates a superincreasing
knapsack makes the problem simple, it is irrelevant if this is the
original one or not

• And such values are easy to find, if D is constructed from a
superincreasing knapsack

• Remember, in general, the knapsack problem is NP-complete, but
(as it turns out) if the knapsack is constructed from a
superincreasing one, the problem is much simpler

• The trapdoor is too big



A different idea: double one-way functions

• Use two one-way functions f and g that satisfy the symmetry

g(f (a), b) = g(f (b), a)

• This cannot be used for encryption/signing because one does not
necessarily recover a or b

• But it can be used for key exchange

• Alice takes a secret random a and makes f (a) public
• Bob takes a secret random b and makes f (b) public
• Both can now create k = g(f (b), a) = g(f (a), b)



Diffie-Hellman key exchange

Use exponentiation mod p:

g(x , y) = xy mod p

f (x) = g(α, x) = αx mod p

where α is a “primitive root of numbers mod p”

The symmetry is

g(f (a), b) = (αa)b = (αb)a = g(f (b), a) mod p

This can be used for key exchange: parameters p and α

• Alice takes a secret random a and makes αa mod p public

• Bob takes a secret random b and makes αb mod p public

• Both can now create k = (αa)b = (αb)a mod p



Security of Diffie-Hellman key exchange

The one-way function is exponentiation mod p, so security depends on
the difficulty of calculating discrete logarithms,

“log”α(t) = Lα(t), the solution to αx = t mod p

If discrete logaritms are easy to calculate, Eve can do Lα(α
a) = a

Reminder: RSA also needs this to be a hard problem since Lc(m) = d
(but that’s another story)



Security of Diffie-Hellman key exchange

The one-way function is exponentiation mod p, so security depends on
the difficulty of calculating discrete logarithms,

“log”α(t) = Lα(t), the solution to αx = t mod p

To ensure existence of the discrete logarithm, p needs to be prime and
the number α needs to be a primitive root mod p, and to make it unique,
we choose the smallest possible solution to the equation

Behaves like the usual logarithm, in particular

Lα(ab) = Lα(a) + Lα(b) mod p − 1



Calculating the discrete logarithm

The discrete logarithm Lα(t) is the solution to the equation αx = t mod
p

A simple thing to do is to determine if x is even or odd (p − 1 is even)

αp−1 = 1 mod p

α(p−1)/2 = ±1 mod p

but that means

α(p−1)/2 = −1 mod p

t(p−1)/2 = αx(p−1)/2 = (−1)x mod p

In other words, if t(p−1)/2 = 1, then x = 0 mod 2, otherwise x = 1 mod 2



Calculating the discrete logarithm

The discrete logarithm Lα(t) is the solution to the equation αx = t mod
p

OK, so we know if x is even or odd. Now, if p − 1 is divisible by 3 (and
not by 9), and

t(p−1)/3 = αx(p−1)/3 mod p

There are only three possible values of

x (p−1)/3 mod p − 1

Exhaustive search will give you the (unique) solution

x mod 3



Calculating the discrete logarithm

The discrete logarithm Lα(t) is the solution to the equation αx = t mod
p

Suddenly we have x mod 2 and x mod 3. This can be continued, but will
only work for small primes (and powers of small primes, see the book)

If we can do this for all prime power factors of p − 1, we can use the
Chinese remainder theorem to reconstruct x

The procedure is called the Pohlig-Hellman algorithm and works
when p − 1 has only small factors

This works for the same reason that the Pollard p − 1 method can factor
n = pq if p − 1 has only small factors



Calculating the discrete logarithm

The discrete logarithm Lα(t) is the solution to the equation αx = t mod
p

• The Baby step, Giant step method: choose N2 ≥ p − 1 and build
two lists of N numbers αj , and tα−Nk . Look for a match between
the lists, use the match to form x = j + Nk (works up to 20-digit p)

• Index calculus uses similar ideas as Quadratic sieve factoring:
find a list of αj mod p that are products of small primes. Match
these against a similar list of tαk mod p that also are products of
small primes, and solve the resulting equations (choose 200-digit
p to be safe)



ElGamal encryption

• Choose a large prime p, and a primitive root α mod p. Also, take a
random integer a and calculate β = αa mod p

• The public key is the values of p, α, and β, while the secret key is
the value a

• Encryption uses a random integer k , and the ciphertext is the pair
(αk ,βkm)

• αk is used to transmit the “one-time secret” k
• βk is the “one-time pad” for m

• Decryption is done with a, by calculating

(αk)−a(βkm) = (α−ak)(αakm) = m mod p



Security of ElGamal encryption

• The one-way function is (again) exponentiation mod p, so security
depends on the difficulty of calculating discrete logarithms Lα(t),
the solution to αx = t mod p

• If discrete logarithms are easy to calculate, Eve can do Lα(β) = a
and decrypt using (αk)−a(βkm) = (α−ak)(αakm) = m

• ElGamal is slightly better off than vanilla RSA because of the
random k used, so short messages are less of a problem. It rather
compares with RSA-OAEP



Key length

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”



Trapdoor one-way functions

• A trapdoor one-way function is a function that is easy to compute
but computationally hard to reverse

• Easy to calculate f (x) from x
• Hard to invert: to calculate x from f (x)

• A trapdoor one-way function has one more property, that with
certain knowledge it is easy to invert, to calculate x from f (x)

• There is no proof that trapdoor one-way functions exist, or even
real evidence that they can be constructed. Examples:

• RSA (factoring)
• Knapsack (NP-complete but insecure with trapdoor)
• Diffie-Hellman + ElGamal (discrete log)


