
Cryptography Lecture 6
Public key principles, one-way functions, RSA



Symmetric key cryptography

Thus far in the course, we have learnt about systems where the
encryption key is the same as the decryption
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Asymmetric key cryptography

In 1976, Diffie and Hellman proposed the use of different keys for
encryption and decryption
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Public key cryptography

Asymmetric key systems can be used in public key cryptography
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One-way functions

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate f (x) from x

• Hard to invert: to calculate x from f (x)

There is no proof that one-way functions exist, or even real evidence
that they can be constructed

Even so, there are examples that seem one-way: they are easy to
compute but we know of no easy way to reverse them, for example

x2 is easy to compute mod n = pq but x1/2 is not



One-way function candidate: modular exponentiation

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from
(xe mod n)

Example: 21233 mod 789

n 2n mod 789
2 4
4 16
8 256
16 65536=49
32 34
64 367

128 559
256 37
512 580

1024 286

21233 = 21024212826421621 = 286 · 559 · 367 · 49 · 2 = 635 mod 789



Trapdoor one-way functions

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate f (x) from x

• Hard to invert: to calculate x from f (x)

A trapdoor one-way function has one more property, that with certain
knowledge it is easy to invert, to calculate x from f (x)

There is no proof that trapdoor one-way functions exist, or even real
evidence that they can be constructed.

A few examples will follow (anyway)



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

21233 = 635 mod 789

63517 = 2 mod 789

There is no proof that this is a true trapdoor one-way function, but we
think it is
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Mathematical requirements

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

x1233 = y mod 789

y17 = x mod 789

Somehow, (x1233)17 = x1233·17 = x1 mod 789, that is, 1233 · 17 = 1 in the
exponent. Why and how do we find the numbers?



Greatest Common Divisor

gcd(576, 135) =

gcd(135, 36) = gcd(36, 27) = gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36)

= gcd(36, 27) = gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36) = gcd(36, 27)

= gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36) = gcd(36, 27) = gcd(27, 9)

= 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36) = gcd(36, 27) = gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

Theorem (the extended Euclidean algorithm): Given nonzero a and
b, there exist x and y such that

ax + by = gcd(a, b)

A proof is available in the book. Outline:

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0

36 = 576− 4 · 135
27 = 135− 3 · 36
9 = 36− 1 · 27

9 = 36− 27 = 36− (135− 3 · 36) = −135 + 4 · 36
= −135 + 4 · (576− 4 · 135) = 4 · 576− 17 · 135
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Arithmetic mod n

• Numbers mod n are equal (congruent) if their difference is a
multiple of n

• Addition, subtraction, and multiplication mod n works as usual:

5 = 27 mod 11 because 27− 5 = 2 · 11

5 + 7 = 1 mod 11 because (5 + 7)− 1 = 11
5− 7 = 9 mod 11 because 9− (5− 7) = 11
5 · 7 = 2 mod 11 because (5 · 7)− 2 = 3 · 11

• But division is not always possible



Division mod n

If gcd(a, n) = 1, then you can divide by a, because of the following
theorem:

Theorem: If gcd(a, n) = 1 there exists an x such that ax = 1 mod n

Proof: The extended Euclidean algorithm gives us x and y so that
ax + ny = 1. Now,

ax + ny = ax mod n

so
ax = 1 mod n



Division mod n

Example: solve

5x + 6 = 2 mod 11

5x = −4 mod 11

Division by 5 is possible because gcd(5, 11) = 1, and the extended
Euclidean algorithm gives −2 · 5 + 1 · 11 = 1 so that −2 = 1/5 mod 11.

5x = 7 mod 11

−2 · 5x = −2 · 7 mod 11

x = −14 mod 11

x = 8 mod 11



Division mod n

Example: solve

5x + 6 = 2 mod 12

5x = −4 mod 12

Division by 5 is possible because gcd(5, 12) = 1, and the extended
Euclidean algorithm gives −7 · 5 + 3 · 12 = 1 so that −7 = 1/5 mod 12.

5x = 8 mod 12

−7 · 5x = −7 · 8 mod 12

x = −56 mod 12

x = 4 mod 12



Division mod n

Example: solve
5x + 6 = 2 mod 10

Division by 5 is not possible because gcd(5, 10) = 5.

• If x is odd, the left-hand side is odd while the right-hand side is
even, so no solutions.

• If x is even, the left-hand side is 6 (mod 10, whatever value x has),
and the right-hand side is 2 (mod 10), so no solutions



Division mod n

Example: solve
6x + 6 = 2 mod 10

Division by 6 is not possible because gcd(6, 10) = 2.

And yet there are solutions, because all terms have a factor 2. In this
case, you should solve the reduced congruence

3x + 3 = 1 mod 5,

Division with 3 (multiplication with 2) gives

x + 1 = 2 mod 5,

so that x = 1 is the solution. The original equation has the solutions 1
and 6, both = 1 mod 5



Division mod n

Division by 5 mod 11 is possible because gcd(5, 11) = 1, and the
extended Euclidean algorithm gives −2 · 5 + 1 · 11 = 1 so that −2 = 1/5
mod 11.

Division by 5 mod 12 is possible because gcd(5, 12) = 1, and the
extended Euclidean algorithm gives −7 · 5 + 3 · 12 = 1 so that −7 = 1/5
mod 12.

Division by 5 mod 10 is not possible because gcd(5, 10) = 5.

OK. But we want to divide in the exponent:

x1233·17 = x1 mod 789



Fermat’s little theorem

Having learnt how division works (mod p), we can prove

Theorem: If p is a prime and p does not divide a, then ap−1 = 1 mod p

Proof: Since p does not divide a, a−1 exists mod p, which means that
multiplication with a is one-to-one. Then

(a · 1)(a · 2)...(a · (p − 1)) = 1 · 2 · ... · (p − 1) mod p

and since p does not divide 1 · 2 · ... · (p − 1), we can divide with the
right-hand side and obtain the congruence of the theorem

Example: 34 = 1 mod 5; 3342 = 1 mod 43



Fermat’s little theorem

Having learnt how division works (mod p), we can prove

Theorem: If p is a prime and p does not divide a, then ap−1 = 1 mod p

Proof: Since p does not divide a, a−1 exists mod p, which means that
multiplication with a is one-to-one. Then
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Fermat’s little theorem, again

Having learnt how division works (mod p), we can prove

Theorem: If p is a prime and p does not divide a, then ap−1 = 1 = a0

mod p

In other words: Calculations that are mod p in the base number are
mod p − 1 in the exponent

Example:

34 = 1 mod 5, 35 = 3 mod 5;

3342 = 1 mod 43, 3343 = 33 mod 43



Trapdoor one-way function candidate: exponentiation modulo a
prime p?

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod p) from x

• Hard to invert: to calculate x from (xe mod p)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod p)d mod p

Calculations in the exponent are mod p − 1, so we need ed = 1 mod
p − 1

Unfortunately, the extended Euclidean algorithm is an efficient
algorithm to find d . This is not good enough.



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

What about composite n?



Euler’s theorem

Having learnt how division works (mod n), we can prove

Theorem: If gcd(a, n) = 1, then

aφ(n) = 1 mod n,

where φ(n) is the number of integers 1 ≤ x ≤ n such that gcd(x , n) = 1

Proof: Since gcd(a, n) = 1, a−1 exists mod n, which means that
multiplication with a is one-to-one. For the integers 1 ≤ xi ≤ n such that
gcd(xi , n) = 1, it holds that gcd(axi , n) = 1, so

(a · x1)(a · x2) · ... · (a · xφ(n)) = x1x2 · ... · xφ(n) mod n

and since gcd(x1x2 ... xφ(n), n) = 1, we can divide with the right-hand
side and obtain the congruence of the theorem



Euler’s totient function φ(n)

Euler’s totient function φ(n) is the number of integers 1 ≤ x ≤ n such
that gcd(x , n) = 1

• φ(p) = p − 1 if p is prime

• φ(10) = 4 because
gcd(1, 10) = 1, gcd(2, 10) = 2, gcd(3, 10) = 1,
gcd(4, 10) = 2, gcd(5, 10) = 5, gcd(6, 10) = 2,
gcd(7, 10) = 1, gcd(8, 10) = 2, gcd(9, 10) = 1

• φ(pq) = (p − 1)(q − 1)

• φ(p2q) = p(p − 1)(q − 1)



Euler’s theorem

Having learnt how division works (mod n), we can prove

Theorem: If gcd(a, n) = 1, then

aφ(n) = 1 mod n,

where φ(n) is the number of integers 1 ≤ x ≤ n such that gcd(x , n) = 1

Proof: Since gcd(a, n) = 1, a−1 exists mod n, which means that
multiplication with a is one-to-one. For the integers 1 ≤ xi ≤ n such that
gcd(xi , n) = 1, it holds that gcd(axi , n) = 1, so

(a · x1)(a · x2) · ... · (a · xφ(n)) = x1x2 · ... · xφ(n) mod n

and since gcd(x1x2 ... xφ(n), n) = 1, we can divide with the right-hand
side and obtain the congruence of the theorem



Euler’s theorem, again

Having learnt how division works (mod n), we can prove

Theorem: If gcd(a, n) = 1, then

aφ(n) = 1 mod n,

where φ(n) is the number of integers 1 ≤ x ≤ n such that gcd(x , n) = 1

In other words: Calculations that are mod n in the base number are
mod φ(n) in the exponent

Example:

x1233·17 = x1 mod 789 = 263× 3, because
1233 · 17 = 1 mod 524 = φ(789) = 262× 2,



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

Calculations in the exponent are mod φ(n), so we need ed = 1 mod
φ(n)

The extended Euclidean algorithm is an efficient algorithm to find d , but
you need to know φ(n), otherwise it won’t work!



Euler’s totient function φ(n)

Euler’s totient function φ(n) is the number of integers 1 ≤ x ≤ n such
that gcd(x , n) = 1

• φ(p) = p − 1 if p is prime

• φ(10) = 4 because
gcd(1, 10) = 1, gcd(2, 10) = 2, gcd(3, 10) = 1,
gcd(4, 10) = 2, gcd(5, 10) = 5, gcd(6, 10) = 2,
gcd(7, 10) = 1, gcd(8, 10) = 2, gcd(9, 10) = 1

• φ(pq) = (p − 1)(q − 1)

• φ(p2q) = p(p − 1)(q − 1)



Trapdoor one-way function candidate: exponentiation modulo
n = pq

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

Euler’s theorem tells us that if we use n = pq, and know the
factorization, we can calculate φ(n) = φ(pq) = (p− 1)(q− 1) and also d .

OK, so we use a large composite n = pq that cannot be factored
efficiently



Trapdoor one-way function candidate: exponentiation modulo
n = pq

Euler’s theorem tells us that if we use n = pq, and know the
factorization, we can calculate φ(n) = φ(pq) = (p− 1)(q− 1) and also d .

But that is only one possible method. Perhaps there are others?

How hard is it to solve for x in

xe = c mod n?

We will see that it is equally hard as factoring n = pq



Square roots mod n

x2 = 1 mod 7 has the solutions ±1 (as for all odd primes)

x2 = 1 mod 15 has the solutions ±1, ±4

The last seems simple enough (±1 mod 3 and ±1 mod 5), but how do
we find solutions in general?



Chinese remaindering

Example:

x = 25 mod 42⇒

{
x = 4 mod 7

x = 1 mod 6

Chinese remainder theorem:

x = 25 mod 42⇐

{
x = 4 mod 7

x = 1 mod 6
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Chinese remaindering

Theorem: Suppose gcd(n,m) = 1. Given integers a and b, there exists
exactly one solution x mod mn to the simultaneous congruences{

x = a mod m

x = b mod n

Proof: The extended Euclidean algoritm gives us s and t such that
ms + nt = 1, or

ms = 1 mod n and nt = 1 mod m.

The number x = bms + ant is a solution because

x = bms = b mod n and x = ant = a mod m.

If y is another solution, then x = y mod n and x = y mod m, so x = y
mod mn.



Square roots mod 15

Example: Solve x2 = 1 mod 15.

• Break the congruence into two congruences over prime powers,
since this is easier to solve

• Combine the solutions through Chinese remaindering

x2 = 1 mod 3 has solutions x = ±1 mod 3
x2 = 1 mod 5 has solutions x = ±1 mod 5

In total four combinations

x = +1 mod 3, x = +1 mod 5 gives x = +1 mod 15
x = +1 mod 3, x = −1 mod 5 gives x = +4 mod 15
x = −1 mod 3, x = +1 mod 5 gives x = −4 mod 15
x = −1 mod 3, x = −1 mod 5 gives x = −1 mod 15



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q
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If we can solve x2 = y mod pq, there will be four different solutions, ±a
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x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q, in other words p divides a− b
while q does not

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q, in other words p divides a− b
while q does not, so that gcd(a− b, n) = p and we have factored n

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q, in other words p divides a− b
while q does not, so that gcd(a− b, n) = p and we have factored n

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Trapdoor one-way function candidate: exponentiation modulo
n = pq

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

We have shown (using the Chinese remainder theorem) that solving
x2 = c mod pq, obtaining four roots ±a 6= ±b, is equally hard as
factoring n = pq.



Rivest Shamir Adleman (1977)

• Bob chooses secret primes p and q, and sets n = pq

• Bob chooses e with gcd(e,φ(n)) = 1

• Bob computes d so that de = 1 mod φ(n)

• Bob makes n and e public but keeps p, q and d secret

• Alice encrypts m as c = me mod n

• Bob decrypts c as m = cd mod n



Choose p and q: Test for primality

Theorem (Fermat’s little theorem): If n is prime and a 6= 0 mod n,
then an−1 = 1 mod n

Fermat primality test: To test n, take a random a 6= 0,±1 mod n. If
an−1 6= 1, then n is composite, otherwise n is prime with high probability

How high? — We’ll use a more advanced test



Choose p and q: Test for primality

Theorem (Fermat’s little theorem): If n is prime and a 6= 0 mod n,
then an−1 = 1 mod n

Fermat primality test: To test n, take a random a 6= 0,±1 mod n. If
an−1 6= 1, then n is composite, otherwise n is prime with high probability

How high? — We’ll use a more advanced test



Choose p and q: Test for primality

Miller-Rabin primality test: To test n, take a random a 6= 0,±1 mod n,
and write n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
if this is −1 then stop: n is probably prime

• Repeat. If you reach bk then n is composite

(Seems complicated? Let’s try to understand how it works. . . )



Choose p and q: Test for primality

Miller-Rabin primality test: To test n, take a random a 6= 0,±1 mod n,
and write n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime
(because an−1 = 1, remember the Fermat primality test)

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
(because bj 6= ±1, so we can factor n)
if this is −1 then stop: n is probably prime
(because an−1 = 1, Fermat again)

• Repeat. If you reach bk then n is composite
(if bk = +1 remember that bk−1 6= ±1 so we can factor n,
otherwise bk = an−1 6= 1, remember the Fermat primality test)



Choose p and q: Only test for primality

• Both the Fermat test and the Miller-Rabin test (and the
Solovay-Strassen test in the book) are probabilistic tests.

• They are fast but can fail, the Miller-Rabin test fails with probability
less than 1/4 (bad value of a). Performing the test for say 10
different random values of a will fail once in a million.

• The primality test from 2004 by Agrawal, Kayal and Saxena is
deterministic and polynomial time (efficient), but can nevertheless
still not compete with the probabilistic tests



Choose p and q: Avoid simple factorization

• The Fermat factorization method uses
n = x2 − y2 = (x + y)(x − y)

• Calculate n+ 12, n+ 22, n+ 32, n+ 42, n+ 52, . . . , until we reach a
square, then we are done.

Example:

295927 + 32 = 295936 = 5442

295927 = 5442 − 32 = 541 · 547

• This is unlikely to be a problem for a many-digit n = pq, but usually
p and q are chosen to be of slightly different size, to be on the safe
side



Choose p and q: Avoid simple factorization

The Pollard p − 1 factorization method uses b = aB! mod n for chosen
a and B. Calculate d = gcd(b − 1, n). If d is not 1 or n, we have factored
n.

This works if one prime factor p of n is such that p − 1 has only small
factors. If B is big enough, B! = k(p − 1), and b = aB! = 1 mod p Then,
b − 1 contains a factor p, as does n.

Solution: choose p and q so that p − 1 and q − 1 has at least one large
prime factor



Choose p and q: Test for primality

Fermat primality test: Take a random a 6= 0,±1 mod n.
If an−1 6= 1, then n is composite, otherwise n is prime with high
probability

Miller-Rabin primality test: Take a random a 6= 0,±1 mod n, and write
n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
if this is −1 then stop: n is probably prime

• Repeat. If you reach bk then n is composite



Choose p and q: Avoid simple factorization

The Fermat factorization method works if p and q are close, so that
trying n2 + 12, n2 + 22, n2 + 32, . . . will find a square in a reasonable
amount of time

Solution: choose p and q to be of slightly different size

The Pollard p − 1 factorization method works if one prime factor p of
n is such that p − 1 has only small factors

Solution: choose p and q so that p − 1 and q − 1 has at least one large
prime factor



Rivest Shamir Adleman (1977)

• Bob chooses secret primes p and q, and sets n = pq

• Choose primes p and q using, say, the Miller-Rabin test
• Choose primes of slightly different size
• Choose p and q so that p − 1 and q − 1 has at least one large

prime factor

• Bob chooses e with gcd(e,φ(n)) = 1

• Bob computes d so that de = 1 mod φ(n)

• Bob makes n and e public but keeps p, q and d secret

• Alice encrypts m as c = me mod n

• Bob decrypts c as m = cd mod n


