
Cryptography Lecture 6
Public key principles, one-way functions, RSA



Symmetric key cryptography

Thus far in the course, we have learnt about systems where the
encryption key is the same as the decryption

Key Key

Alice Bob

Eve

Encrypt Decrypt



Asymmetric key cryptography

In 1976, Diffie and Hellman proposed the use of different keys for
encryption and decryption

Encryption
Key

Decryption
Key

Alice Bob

Eve

Encrypt Decrypt



Public key cryptography

Asymmetric key systems can be used in public key cryptography

Public
Encryption

Key

Secret
Decryption

Key

Anyone Bob

Eve

Encrypt Decrypt



One-way functions

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate f (x) from x

• Hard to invert: to calculate x from f (x)

There is no proof that one-way functions exist, or even real evidence
that they can be constructed

Even so, there are examples that seem one-way: they are easy to
compute but we know of no easy way to reverse them, for example

x2 is easy to compute mod n = pq but x1/2 is not



One-way function candidate: modular exponentiation

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from
(xe mod n)

Example: 21233 mod 789

n 2n mod 789
2 4
4 16
8 256
16 65536=49
32 34
64 367

128 559
256 37
512 580

1024 286

21233 = 21024212826421621 = 286 · 559 · 367 · 49 · 2 = 635 mod 789



Trapdoor one-way functions

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate f (x) from x

• Hard to invert: to calculate x from f (x)

A trapdoor one-way function has one more property, that with certain
knowledge it is easy to invert, to calculate x from f (x)

There is no proof that trapdoor one-way functions exist, or even real
evidence that they can be constructed.

A few examples will follow (anyway)



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

21233 = 635 mod 789

63517 = 2 mod 789

There is no proof that this is a true trapdoor one-way function, but we
think it is



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

21233 = 635 mod 789

63517 = 2 mod 789

There is no proof that this is a true trapdoor one-way function, but we
think it is



Mathematical requirements

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

x1233 = y mod 789

y17 = x mod 789

Somehow, (x1233)17 = x1233·17 = x1 mod 789, that is, 1233 · 17 = 1 in the
exponent. Why and how do we find the numbers?



Greatest Common Divisor

gcd(576, 135) =

gcd(135, 36) = gcd(36, 27) = gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36)

= gcd(36, 27) = gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36) = gcd(36, 27)

= gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36) = gcd(36, 27) = gcd(27, 9)

= 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

gcd(576, 135) = gcd(135, 36) = gcd(36, 27) = gcd(27, 9) = 9

The Euclidean algorithm

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0



Greatest Common Divisor

Theorem (the extended Euclidean algorithm): Given nonzero a and
b, there exist x and y such that

ax + by = gcd(a, b)

A proof is available in the book. Outline:

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0

36 = 576− 4 · 135
27 = 135− 3 · 36
9 = 36− 1 · 27

9 = 36− 27 = 36− (135− 3 · 36) = −135 + 4 · 36
= −135 + 4 · (576− 4 · 135) = 4 · 576− 17 · 135



Greatest Common Divisor

Theorem (the extended Euclidean algorithm): Given nonzero a and
b, there exist x and y such that

ax + by = gcd(a, b)

A proof is available in the book. Outline:

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0

36 = 576− 4 · 135
27 = 135− 3 · 36

9 = 36− 1 · 27

9 = 36− 27 = 36− (135− 3 · 36) = −135 + 4 · 36
= −135 + 4 · (576− 4 · 135) = 4 · 576− 17 · 135



Greatest Common Divisor

Theorem (the extended Euclidean algorithm): Given nonzero a and
b, there exist x and y such that

ax + by = gcd(a, b)

A proof is available in the book. Outline:

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0

36 = 576− 4 · 135

27 = 135− 3 · 36
9 = 36− 1 · 27

9 = 36− 27 = 36− (135− 3 · 36) = −135 + 4 · 36
= −135 + 4 · (576− 4 · 135) = 4 · 576− 17 · 135



Greatest Common Divisor

Theorem (the extended Euclidean algorithm): Given nonzero a and
b, there exist x and y such that

ax + by = gcd(a, b)

A proof is available in the book. Outline:

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0

36 = 576− 4 · 135
27 = 135− 3 · 36
9 = 36− 1 · 27

9 = 36− 27 = 36− (135− 3 · 36) = −135 + 4 · 36
= −135 + 4 · (576− 4 · 135) = 4 · 576− 17 · 135



Greatest Common Divisor

Theorem (the extended Euclidean algorithm): Given nonzero a and
b, there exist x and y such that

ax + by = gcd(a, b)

A proof is available in the book. Outline:

576 = 4 · 135 + 36

135 = 3 · 36 + 27

36 = 1 · 27 + 9

27 = 3 · 9 + 0

36 = 576− 4 · 135
27 = 135− 3 · 36
9 = 36− 1 · 27

9 = 36− 27 = 36− (135− 3 · 36) = −135 + 4 · 36
= −135 + 4 · (576− 4 · 135) = 4 · 576− 17 · 135



Arithmetic mod n

• Numbers mod n are equal (congruent) if their difference is a
multiple of n

• Addition, subtraction, and multiplication mod n works as usual:

5 = 27 mod 11 because 27− 5 = 2 · 11

5 + 7 = 1 mod 11 because (5 + 7)− 1 = 11
5− 7 = 9 mod 11 because 9− (5− 7) = 11
5 · 7 = 2 mod 11 because (5 · 7)− 2 = 3 · 11

• But division is not always possible



Division mod n

If gcd(a, n) = 1, then you can divide by a, because of the following
theorem:

Theorem: If gcd(a, n) = 1 there exists an x such that ax = 1 mod n

Proof: The extended Euclidean algorithm gives us x and y so that
ax + ny = 1. Now,

ax + ny = ax mod n

so
ax = 1 mod n



Division mod n

Example: solve

5x + 6 = 2 mod 11

5x = −4 mod 11

Division by 5 is possible because gcd(5, 11) = 1, and the extended
Euclidean algorithm gives −2 · 5 + 1 · 11 = 1 so that −2 = 1/5 mod 11.

5x = 7 mod 11

−2 · 5x = −2 · 7 mod 11

x = −14 mod 11

x = 8 mod 11



Division mod n

Example: solve

5x + 6 = 2 mod 12

5x = −4 mod 12

Division by 5 is possible because gcd(5, 12) = 1, and the extended
Euclidean algorithm gives −7 · 5 + 3 · 12 = 1 so that −7 = 1/5 mod 12.

5x = 8 mod 12

−7 · 5x = −7 · 8 mod 12

x = −56 mod 12

x = 4 mod 12



Division mod n

Example: solve
5x + 6 = 2 mod 10

Division by 5 is not possible because gcd(5, 10) = 5.

• If x is odd, the left-hand side is odd while the right-hand side is
even, so no solutions.

• If x is even, the left-hand side is 6 (mod 10, whatever value x has),
and the right-hand side is 2 (mod 10), so no solutions



Division mod n

Example: solve
6x + 6 = 2 mod 10

Division by 6 is not possible because gcd(6, 10) = 2.

And yet there are solutions, because all terms have a factor 2. In this
case, you should solve the reduced congruence

3x + 3 = 1 mod 5,

Division with 3 (multiplication with 2) gives

x + 1 = 2 mod 5,

so that x = 1 is the solution. The original equation has the solutions 1
and 6, both = 1 mod 5



Division mod n

Division by 5 mod 11 is possible because gcd(5, 11) = 1, and the
extended Euclidean algorithm gives −2 · 5 + 1 · 11 = 1 so that −2 = 1/5
mod 11.

Division by 5 mod 12 is possible because gcd(5, 12) = 1, and the
extended Euclidean algorithm gives −7 · 5 + 3 · 12 = 1 so that −7 = 1/5
mod 12.

Division by 5 mod 10 is not possible because gcd(5, 10) = 5.

OK. But we want to divide in the exponent:

x1233·17 = x1 mod 789



Fermat’s little theorem

Having learnt how division works (mod p), we can prove

Theorem: If p is a prime and p does not divide a, then ap−1 = 1 mod p

Proof: Since p does not divide a, a−1 exists mod p, which means that
multiplication with a is one-to-one. Then

(a · 1)(a · 2)...(a · (p − 1)) = 1 · 2 · ... · (p − 1) mod p

and since p does not divide 1 · 2 · ... · (p − 1), we can divide with the
right-hand side and obtain the congruence of the theorem

Example: 34 = 1 mod 5; 3342 = 1 mod 43



Fermat’s little theorem

Having learnt how division works (mod p), we can prove

Theorem: If p is a prime and p does not divide a, then ap−1 = 1 mod p

Proof: Since p does not divide a, a−1 exists mod p, which means that
multiplication with a is one-to-one. Then

(a · 1)(a · 2)...(a · (p − 1)) = 1 · 2 · ... · (p − 1) mod p

and since p does not divide 1 · 2 · ... · (p − 1), we can divide with the
right-hand side and obtain the congruence of the theorem

Example: 34 = 1 mod 5; 3342 = 1 mod 43



Fermat’s little theorem, again

Having learnt how division works (mod p), we can prove

Theorem: If p is a prime and p does not divide a, then ap−1 = 1 = a0

mod p

In other words: Calculations that are mod p in the base number are
mod p − 1 in the exponent

Example:

34 = 1 mod 5, 35 = 3 mod 5;

3342 = 1 mod 43, 3343 = 33 mod 43



Trapdoor one-way function candidate: exponentiation modulo a
prime p?

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod p) from x

• Hard to invert: to calculate x from (xe mod p)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod p)d mod p

Calculations in the exponent are mod p − 1, so we need ed = 1 mod
p − 1

Unfortunately, the extended Euclidean algorithm is an efficient
algorithm to find d . This is not good enough.



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

What about composite n?



Euler’s theorem

Having learnt how division works (mod n), we can prove

Theorem: If gcd(a, n) = 1, then

aφ(n) = 1 mod n,

where φ(n) is the number of integers 1 ≤ x ≤ n such that gcd(x , n) = 1

Proof: Since gcd(a, n) = 1, a−1 exists mod n, which means that
multiplication with a is one-to-one. For the integers 1 ≤ xi ≤ n such that
gcd(xi , n) = 1, it holds that gcd(axi , n) = 1, so

(a · x1)(a · x2) · ... · (a · xφ(n)) = x1x2 · ... · xφ(n) mod n

and since gcd(x1x2 ... xφ(n), n) = 1, we can divide with the right-hand
side and obtain the congruence of the theorem



Euler’s totient function φ(n)

Euler’s totient function φ(n) is the number of integers 1 ≤ x ≤ n such
that gcd(x , n) = 1

• φ(p) = p − 1 if p is prime

• φ(10) = 4 because
gcd(1, 10) = 1, gcd(2, 10) = 2, gcd(3, 10) = 1,
gcd(4, 10) = 2, gcd(5, 10) = 5, gcd(6, 10) = 2,
gcd(7, 10) = 1, gcd(8, 10) = 2, gcd(9, 10) = 1

• φ(pq) = (p − 1)(q − 1)

• φ(p2q) = p(p − 1)(q − 1)



Euler’s theorem

Having learnt how division works (mod n), we can prove

Theorem: If gcd(a, n) = 1, then

aφ(n) = 1 mod n,

where φ(n) is the number of integers 1 ≤ x ≤ n such that gcd(x , n) = 1

Proof: Since gcd(a, n) = 1, a−1 exists mod n, which means that
multiplication with a is one-to-one. For the integers 1 ≤ xi ≤ n such that
gcd(xi , n) = 1, it holds that gcd(axi , n) = 1, so

(a · x1)(a · x2) · ... · (a · xφ(n)) = x1x2 · ... · xφ(n) mod n

and since gcd(x1x2 ... xφ(n), n) = 1, we can divide with the right-hand
side and obtain the congruence of the theorem



Euler’s theorem, again

Having learnt how division works (mod n), we can prove

Theorem: If gcd(a, n) = 1, then

aφ(n) = 1 mod n,

where φ(n) is the number of integers 1 ≤ x ≤ n such that gcd(x , n) = 1

In other words: Calculations that are mod n in the base number are
mod φ(n) in the exponent

Example:

x1233·17 = x1 mod 789 = 263× 3, because
1233 · 17 = 1 mod 524 = φ(789) = 262× 2,



Trapdoor one-way function candidate: modular exponentiation

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

Calculations in the exponent are mod φ(n), so we need ed = 1 mod
φ(n)

The extended Euclidean algorithm is an efficient algorithm to find d , but
you need to know φ(n), otherwise it won’t work!



Euler’s totient function φ(n)

Euler’s totient function φ(n) is the number of integers 1 ≤ x ≤ n such
that gcd(x , n) = 1

• φ(p) = p − 1 if p is prime

• φ(10) = 4 because
gcd(1, 10) = 1, gcd(2, 10) = 2, gcd(3, 10) = 1,
gcd(4, 10) = 2, gcd(5, 10) = 5, gcd(6, 10) = 2,
gcd(7, 10) = 1, gcd(8, 10) = 2, gcd(9, 10) = 1

• φ(pq) = (p − 1)(q − 1)

• φ(p2q) = p(p − 1)(q − 1)



Trapdoor one-way function candidate: exponentiation modulo
n = pq

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

Euler’s theorem tells us that if we use n = pq, and know the
factorization, we can calculate φ(n) = φ(pq) = (p− 1)(q− 1) and also d .

OK, so we use a large composite n = pq that cannot be factored
efficiently



Trapdoor one-way function candidate: exponentiation modulo
n = pq

Euler’s theorem tells us that if we use n = pq, and know the
factorization, we can calculate φ(n) = φ(pq) = (p− 1)(q− 1) and also d .

But that is only one possible method. Perhaps there are others?

How hard is it to solve for x in

xe = c mod n?

We will see that it is equally hard as factoring n = pq



Square roots mod n

x2 = 1 mod 7 has the solutions ±1 (as for all odd primes)

x2 = 1 mod 15 has the solutions ±1, ±4

The last seems simple enough (±1 mod 3 and ±1 mod 5), but how do
we find solutions in general?



Chinese remaindering

Example:

x = 25 mod 42⇒

{
x = 4 mod 7

x = 1 mod 6

Chinese remainder theorem:

x = 25 mod 42⇐

{
x = 4 mod 7

x = 1 mod 6



Chinese remaindering

Example:

x = 25 mod 42⇒

{
x = 4 mod 7

x = 1 mod 6

Chinese remainder theorem:

x = 25 mod 42⇐

{
x = 4 mod 7

x = 1 mod 6



Chinese remaindering

Theorem: Suppose gcd(n,m) = 1. Given integers a and b, there exists
exactly one solution x mod mn to the simultaneous congruences{

x = a mod m

x = b mod n

Proof: The extended Euclidean algoritm gives us s and t such that
ms + nt = 1, or

ms = 1 mod n and nt = 1 mod m.

The number x = bms + ant is a solution because

x = bms = b mod n and x = ant = a mod m.

If y is another solution, then x = y mod n and x = y mod m, so x = y
mod mn.



Square roots mod 15

Example: Solve x2 = 1 mod 15.

• Break the congruence into two congruences over prime powers,
since this is easier to solve

• Combine the solutions through Chinese remaindering

x2 = 1 mod 3 has solutions x = ±1 mod 3
x2 = 1 mod 5 has solutions x = ±1 mod 5

In total four combinations

x = +1 mod 3, x = +1 mod 5 gives x = +1 mod 15
x = +1 mod 3, x = −1 mod 5 gives x = +4 mod 15
x = −1 mod 3, x = +1 mod 5 gives x = −4 mod 15
x = −1 mod 3, x = −1 mod 5 gives x = −1 mod 15



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q, in other words p divides a− b
while q does not

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q, in other words p divides a− b
while q does not, so that gcd(a− b, n) = p and we have factored n

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Square roots mod pq

If we can solve x2 = y mod pq, there will be four different solutions, ±a
and ±b, which will simultaneously solve x2 = y mod p and x2 = y mod
q:

x = +a mod pq gives x = +a mod p and x = +a mod q
x = −a mod pq gives x = −a mod p and x = −a mod q
x = +b mod pq gives x = +b mod p and x = +b mod q
x = −b mod pq gives x = −b mod p and x = −b mod q

• This means that a = b mod p or a = −b mod p

• If a = b mod p then a = −b mod q, in other words p divides a− b
while q does not, so that gcd(a− b, n) = p and we have factored n

• If a = −b mod p then a = b mod q, then gcd(a− b, n) = q



Trapdoor one-way function candidate: exponentiation modulo
n = pq

A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate (xe mod n) from x

• Hard to invert: to calculate x from (xe mod n)?

The trapdoor is that with another exponent d it is easy to invert, to
calculate x = (xe mod n)d mod n

We have shown (using the Chinese remainder theorem) that solving
x2 = c mod pq, obtaining four roots ±a 6= ±b, is equally hard as
factoring n = pq.



Rivest Shamir Adleman (1977)

• Bob chooses secret primes p and q, and sets n = pq

• Bob chooses e with gcd(e,φ(n)) = 1

• Bob computes d so that de = 1 mod φ(n)

• Bob makes n and e public but keeps p, q and d secret

• Alice encrypts m as c = me mod n

• Bob decrypts c as m = cd mod n



Choose p and q: Test for primality

Theorem (Fermat’s little theorem): If n is prime and a 6= 0 mod n,
then an−1 = 1 mod n

Fermat primality test: To test n, take a random a 6= 0,±1 mod n. If
an−1 6= 1, then n is composite, otherwise n is prime with high probability

How high? — We’ll use a more advanced test



Choose p and q: Test for primality

Theorem (Fermat’s little theorem): If n is prime and a 6= 0 mod n,
then an−1 = 1 mod n

Fermat primality test: To test n, take a random a 6= 0,±1 mod n. If
an−1 6= 1, then n is composite, otherwise n is prime with high probability

How high? — We’ll use a more advanced test



Choose p and q: Test for primality

Miller-Rabin primality test: To test n, take a random a 6= 0,±1 mod n,
and write n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
if this is −1 then stop: n is probably prime

• Repeat. If you reach bk then n is composite

(Seems complicated? Let’s try to understand how it works. . . )



Choose p and q: Test for primality

Miller-Rabin primality test: To test n, take a random a 6= 0,±1 mod n,
and write n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime
(because an−1 = 1, remember the Fermat primality test)

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
(because bj 6= ±1, so we can factor n)
if this is −1 then stop: n is probably prime
(because an−1 = 1, Fermat again)

• Repeat. If you reach bk then n is composite
(if bk = +1 remember that bk−1 6= ±1 so we can factor n,
otherwise bk = an−1 6= 1, remember the Fermat primality test)



Choose p and q: Only test for primality

• Both the Fermat test and the Miller-Rabin test (and the
Solovay-Strassen test in the book) are probabilistic tests.

• They are fast but can fail, the Miller-Rabin test fails with probability
less than 1/4 (bad value of a). Performing the test for say 10
different random values of a will fail once in a million.

• The primality test from 2004 by Agrawal, Kayal and Saxena is
deterministic and polynomial time (efficient), but can nevertheless
still not compete with the probabilistic tests



Choose p and q: Avoid simple factorization

• The Fermat factorization method uses
n = x2 − y2 = (x + y)(x − y)

• Calculate n+ 12, n+ 22, n+ 32, n+ 42, n+ 52, . . . , until we reach a
square, then we are done.

Example:

295927 + 32 = 295936 = 5442

295927 = 5442 − 32 = 541 · 547

• This is unlikely to be a problem for a many-digit n = pq, but usually
p and q are chosen to be of slightly different size, to be on the safe
side



Choose p and q: Avoid simple factorization

The Pollard p − 1 factorization method uses b = aB! mod n for chosen
a and B. Calculate d = gcd(b − 1, n). If d is not 1 or n, we have factored
n.

This works if one prime factor p of n is such that p − 1 has only small
factors. If B is big enough, B! = k(p − 1), and b = aB! = 1 mod p Then,
b − 1 contains a factor p, as does n.

Solution: choose p and q so that p − 1 and q − 1 has at least one large
prime factor



Choose p and q: Test for primality

Fermat primality test: Take a random a 6= 0,±1 mod n.
If an−1 6= 1, then n is composite, otherwise n is prime with high
probability

Miller-Rabin primality test: Take a random a 6= 0,±1 mod n, and write
n − 1 = 2km with m odd

• Let b0 = am, if this is ±1 then stop: n is probably prime

• Let bj+1 = b2j , if this is +1 then stop: n is composite,
if this is −1 then stop: n is probably prime

• Repeat. If you reach bk then n is composite



Choose p and q: Avoid simple factorization

The Fermat factorization method works if p and q are close, so that
trying n2 + 12, n2 + 22, n2 + 32, . . . will find a square in a reasonable
amount of time

Solution: choose p and q to be of slightly different size

The Pollard p − 1 factorization method works if one prime factor p of
n is such that p − 1 has only small factors

Solution: choose p and q so that p − 1 and q − 1 has at least one large
prime factor



Rivest Shamir Adleman (1977)

• Bob chooses secret primes p and q, and sets n = pq

• Choose primes p and q using, say, the Miller-Rabin test
• Choose primes of slightly different size
• Choose p and q so that p − 1 and q − 1 has at least one large

prime factor

• Bob chooses e with gcd(e,φ(n)) = 1

• Bob computes d so that de = 1 mod φ(n)

• Bob makes n and e public but keeps p, q and d secret

• Alice encrypts m as c = me mod n

• Bob decrypts c as m = cd mod n


