Cryptography Lecture 4 Block ciphers, DES, breaking DES

Breaking a cipher

- Eavesdropper recieves n cryptograms created from n plaintexts in sequence, using the same key
- Redundancy exists in the messages
- There is always one n (the unicity distance) where only one value for the key recreates a possible plaintext, unless we use OTP

Defence against breaking a cipher through exhaustive search

- Change key often enough, so that unicity distance is not reached
- OTP
- Approximation of OTP: Stream ciphers
- Make sure there are too many possible keys for exhaustive search
- Single-letter substitution is not enough, even though there are 26 ! $\approx 4 * 10^{26} \approx 2^{88}$ combinations
- Encrypt larger blocks (than one-, two-, or three-letter combinations)

Defence against breaking a cipher through exhaustive search

- Change key often enough, so that unicity distance is not reached
- OTP
- Approximation of OTP: Stream ciphers
- Make sure there are too many possible keys for exhaustive search
- Single-letter substitution is not enough, even though there are 26 ! $\approx 4 * 10^{26} \approx 2^{88}$ combinations
- Encrypt larger blocks (than one-, two-, or three-letter combinations)

Caesar cipher

Substitution cipher

Playfair

Generic block cipher

Generic block cipher

Data Encryption Standard (1975)

Block ciphers v. codes

- The same block with the same key always produces the same cryptogram, independent of its position in a sequence
- This is simple substitution on the block level
- An attacker could, in principle, create a table of all plaintext values and their corresponding cryptograms, one table for each key, and use this for cryptanalysis
- As defence, blocks and keys must be so large that there are too many values to list in the table

Block cipher criteria

Diffusion If a plaintext character changes, several ciphertext characters should change. This is a basic demand on a block cipher, and ensures that the statistics used need to be block statistics (as opposed to letter statistics)

Confusion Every bit of the ciphertext should depend on several bits in the key. This can be achieved by ensuring that the system is nonlinear

Diffusion: the avalanche effect

- A change in one bit in the input should propagate to many bits in the output

The strict avalanche criterion

- A change in one bit in the input should change each output bit with probability $\frac{1}{2}$
- If this does not hold, an attacker can make predictions on the input, given only the output

Build the system from components

- Diffusion: A change in one bit in the input should change each output bit with probability $\frac{1}{2}$
- This is done by mixing the bits

Build the system from components

- Diffusion: A change in one bit in the input should change each output bit with probability $\frac{1}{2}$
- This is done by mixing the bits

Build the system from components

- Diffusion: A change in one bit in the input should change each output bit with probability $\frac{1}{2}$
- This is done by mixing the bits
- Use different functions depending on the key

Build the system from components

- Diffusion: A change in one bit in the input should change each output bit with probability $\frac{1}{2}$
- This is done by mixing the bits
- Use different functions depending on the key
- Confusion is created by using a nonlinear f

Feistel network

Feistel network

DES

DES

DES

DES

DES

DES

DES

DES

DES key schedule

DES

- There was a lot of controversy surrounding the S-box construction
- People were worried there were backdoors in the system
- But in the late eighties it was found that even small changes in the S-boxes gave a weaker system

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM published the construction criteria

- Each S-box has 6 input bits and four output bits (1970's hardware limit)
- The S-boxes should not be linear functions, or even close to linear
- Each row of an S-box contains all numbers from 0 to 15
- Two inputs that differ by 1 bit should give outputs that differ by at least 2 bits
- Two inputs that differ in the first 2 bits but are equal in the last 2 bits should give unequal outputs
- There are 32 pairs of inputs with a given XOR. No more than eight of the corresponding outputs should have equal XORs
- A similar criterion involving three S-boxes

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM published the construction criteria

- Each S-box has 6 input bits and four output bits (1970's hardware limit)
- The S-boxes should not be linear functions, or even close to linear
- Each row of an S-box contains all numbers from 0 to 15
- Two inputs that differ by 1 bit should give outputs that differ by at least 2 bits
- Two inputs that differ in the first 2 bits but are equal in the last 2 bits should give unequal outputs
- There are 32 pairs of inputs with a given XOR. No more than eight of the corresponding outputs should have equal XORs
- A similar criterion involving three S-boxes

Linearity

- A function f from is linear if

$$
f(a x+b y)=a f(x)+b f(y)
$$

- Example: $f(t)=7 t$ is linear
- A (close to) linear system is much easier to analyse
- Therefore, you cannot use only simple mathematical functions

Linear cryptanalysis

- Make a linear approximation of the cipher
- This will have k as parameter
- Use many plaintext-ciphertext pairs to deduce which linear approximation is the best, and this will correspond to the most likely key

Prohibit linear cryptanalysis

Examples:

- $f(t)=7 t$ is linear
- but $f(t)=(7 t \bmod 8)$ in the ring of numbers mod 16 is nonlinear, because $f(2) \neq 2 f(1)$:

$$
f(2)=(14 \bmod 8)=6 \neq 2 f(1)=2(7 \bmod 8)=14
$$

- of course $f(t)=(7 t \bmod 8)$ is linear in the ring of numbers mod 8

Prohibit linear analysis

- In DES, smaller blocks are used in each step, and are combined to create non-linearity with respect to the larger blocks
- The S-box itself is also chosen to be non-linear

Linear cryptanalysis of DES

- Make a linear approximation of the S-boxes
- Combine these into a linear approximation of the whole cipher
- This will have k as parameter
- Use many plaintext-ciphertext pairs to deduce which linear approximation is the best, and this will correspond to the most likely key
- Needs 2^{43} plaintext-ciphertext pairs for DES

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM published the construction criteria

- Each S-box has 6 input bits and four output bits (1970's hardware limit)
- The S-boxes should not be linear functions, or even close to linear
- Each row of an S-box contains all numbers from 0 to 15
- Two inputs that differ by 1 bit should give outputs that differ by at least 2 bits
- Two inputs that differ in the first 2 bits but are equal in the last 2 bits should give unequal outputs
- There are 32 pairs of inputs with a given XOR. No more than eight of the corresponding outputs should have equal XORs
- A similar criterion involving three S-boxes

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM published the construction criteria

- Each S-box has 6 input bits and four output bits (1970's hardware limit)
- The S-boxes should not be linear functions, or even close to linear
- Each row of an S-box contains all numbers from 0 to 15
- Two inputs that differ by 1 bit should give outputs that differ by at least 2 bits
- Two inputs that differ in the first 2 bits but are equal in the last 2 bits should give unequal outputs
- There are 32 pairs of inputs with a given XOR. No more than eight of the corresponding outputs should have equal XORs
- A similar criterion involving three S-boxes

DES

Simple(r) Encryption System

A one-round Feistel network is trivial to break

A known-plaintext attack breaks the system, because then you know R_{0} and $f\left(R_{0}, k_{1}\right)=R_{1} \oplus L_{0}$, so you can find k_{1}

A one-round Feistel network is trivial to break

A known-plaintext attack breaks the system, because then you know R_{0} and $f\left(R_{0}, k_{1}\right)=R_{1} \oplus L_{0}$, so you can find k_{1}

Simple(r) Encryption System, example

Simple(r) Encryption System, example

Simple(r) Encryption System, example

A two-round Feistel network is trivial to break

Use the same method twice: $\left(R_{0}, f\left(R_{0}, k_{1}\right)=L_{2} \oplus L_{0}\right)$; ($L_{2}, f\left(L_{2}, k_{2}\right)=R_{2} \oplus R_{0}$), this gives two alternatives each for k_{1} and k_{2}. Now, the key schedule may rule out some combinations.

A three-round Feistel network is simple to break

Perform two known-plaintext attacks for $L_{0} R_{0}$ and $L_{0}^{*} R_{0}^{*}$ with $R_{0}=R_{0}^{*}$. Then, the outputs have the relation

$$
R_{3} \oplus R_{3}^{*}=L_{0} \oplus L_{0}^{*} \oplus f\left(L_{3}, k_{3}\right) \oplus f\left(L_{3}^{*}, k_{3}\right)
$$

We have $L_{3} \oplus L_{3}^{*}$ and $f\left(L_{3}, k_{3}\right) \oplus f\left(L_{3}^{*}, k_{3}\right)$

Simple(r) Encryption System, given XOR

Simple(r) Encryption System, given XOR

	$L_{3} \oplus L_{3}^{*}=10$	01110		
		$E\left(L_{3}\right) \oplus k_{3}$	$E\left(L_{3}^{*}\right) \oplus k_{3}$	Out XOR
		0000	1011	111
	\downarrow	0001	1010	100
	Expan	0010	1001	101
	$b_{1} b_{2} b_{4} b_{3} b^{4}$	0011	1000	111
		0100	1111	000
	$E\left(L_{3}\right) \oplus E\left(L_{3}^{*}\right)=10111110$	0101	1110	001
k_{i}	$\xrightarrow{+}+$	0110	1101	000
		0111	1100	000
	XOR: $1011 \sqrt{ }$	1000	0011	111
	S ${ }_{1}$	1001	0010	101
	$\begin{array}{lllllllll}5 & 2 & 1 & 6 & 3 & 4 & 7 & 0\end{array}$	1010	0001	100
	$\begin{array}{llllllll}5 & 2 & 1 & 6 & 3 & 4 & 7 & 0 \\ 1 & 4 & 6 & 2 & 0 & 7 & 5 & 3\end{array}$	1011	0000	111
	14620753	1100	0111	000
	XOR: 100	1101	0110	000
	XOR. 100	1110	0101	001
		1111	0100	000
	$f\left(L_{3}, k_{3}\right) \oplus f\left(L_{3}^{*}, k_{3}\right)$	3) $=1000$		

Simple(r) Encryption System, given XOR

	$L_{3} \oplus L_{3}^{*}=10$	101110		
	------	$E\left(L_{3}\right) \oplus k_{3}$	$E\left(L_{3}^{*}\right) \oplus k_{3}$	Out XOR
		0000	1011	(111)
	\downarrow	0001	1010	100
	Expand	0010	1007	101
	$b_{1} b_{2} b_{4} b_{3} b_{4}$	0011	1000	111
	$b_{1} b_{2} b_{4} b_{3}$	0100	1111	000
	$E\left(L_{3}\right) \oplus E\left(L_{3}^{*}\right)=10111110$	0101	1110	001
k_{i}	$\xrightarrow{+}$	O/10	1101	000
	R	0111	1100	000
	XOR: 1011 ,	1000	0011	111
	S	1001	0010	101
		1010	0001	100
	(5) 211633470	1011	0000	111
	146 (2) 0753	1100	0111	000
	XOR: 100	1101	0110	000
	XOR. 100	1110	0101	001
		1111	0100	000
	$f\left(L_{3}, k_{3}\right) \oplus f\left(L_{3}^{*}, k_{3}\right.$) $=100011$		

Simple(r) Encryption System, given XOR

	$L_{3} \oplus L_{3}^{*}=10$	01110		
		$E\left(L_{3}\right) \oplus k_{3}$	$E\left(L_{3}^{*}\right) \oplus k_{3}$	Out XOR
		0000	1011	111
	\downarrow	0001	1010	100
	Expan	0010	1001	101
	$b_{1} b_{2} b_{4} b_{3} b^{4}$	0011	1000	111
		0100	1111	000
	$E\left(L_{3}\right) \oplus E\left(L_{3}^{*}\right)=10111110$	0101	1110	001
k_{i}	$\xrightarrow{+}$	0110	1101	000
		0111	1100	000
	XOR: $1011 \sqrt{ }$	1000	0011	111
	S ${ }_{1}$	1001	0010	101
	$\begin{array}{lllllllll}5 & 2 & 1 & 6 & 3 & 4 & 7 & 0\end{array}$	1010	0001	100
	$\begin{array}{llllllll}5 & 2 & 1 & 6 & 3 & 4 & 7 & 0 \\ 1 & 4 & 6 & 2 & 0 & 7 & 5 & 3\end{array}$	1011	0000	111
	14620753	1100	0111	000
	XOR: 100	1101	0110	000
		1110	0101	001
		1111	0100	000
	$f\left(L_{3}, k_{3}\right) \oplus f\left(L_{3}^{*}, k_{3}\right)$	3) $=1000$		

A three-round Feistel network is simple to break

Choose $R_{0}=R_{0}^{*}$ so that $f\left(R_{0}, k_{1}\right) \oplus f\left(R_{0}^{*}, k_{1}\right)=0$. Then, we can calculate $f\left(L_{3}, k_{3}\right) \oplus f\left(L_{3}^{*}, k_{3}\right)$

A four-round Feistel network is more complicated to break

Here, if we can guess $f\left(R_{1}, k_{2}\right) \oplus f\left(R_{1}^{*}, k_{2}\right)$ (even if it is $\neq 0$), we can calculate $f\left(L_{4}, k_{4}\right) \oplus f\left(L_{4}^{*}, k_{4}\right)$

Simple(r) Encryption System, given XOR

Simple(r) Encryption System, given XOR

	$R_{1} \oplus R_{1}^{*}=0$	01110		
		$E\left(R_{1}\right) \oplus k_{2}$	$E\left(R_{1}^{*}\right) \oplus k_{2}$	Out XOR
,		0000	0011	011
'	\downarrow	0001	0010	011
+	Expand	0010	0001	011
'	$b_{1} b_{2} b_{4} b_{3} b_{4}$	0011	0000	011
I		0100	0111	011
k	$E\left(R_{1}\right) \oplus E\left(R_{1}^{*}\right)=00111110$	0101	0110	011
k_{i}	$\xrightarrow{+}$	0110	0101	011
!		0111	0100	011
'	XOR: $0011 \sqrt{ }$	1000	1011	011
,	S_{1}	1001	1010	010
,		1010	1001	010
,	$\begin{array}{llllllll}5 & 2 & 1 & 6 & 3 & 4 & 7 & 0 \\ 1 & 4 & 6 & 2 & 0 & 7 & 5 & 3\end{array}$	1011	1000	011
,	14620753	1100	1111	011
'	XOR: ?	1101	1110	010
,	XOR.?	1110	1101	010
!		1111	1100	011
	$f\left(R_{1}, k_{2}\right) \oplus f(R$	($\left.{ }_{1}^{*}, k_{2}\right)=?$		

Simple(r) Encryption System, given XOR

A four-round Feistel network is more complicated to break

Here, if we can guess $f\left(R_{1}, k_{2}\right) \oplus f\left(R_{1}^{*}, k_{2}\right)$ (even if it is $\neq 0$), we can calculate $f\left(L_{4}, k_{4}\right) \oplus f\left(L_{4}^{*}, k_{4}\right)$

Take random input pairs, and use the most likely output XOR to deduce the most likely k_{4}

DES

The seemingly strange criterion is to prohibit differential cryptanalysis

- There are 32 pairs of inputs with a given XOR. No more than eight of the corresponding outputs should have equal XORs

The designers knew about differential cryptanalysis
Still, it works on DES, and breaks 15 -round DES faster than exhaustive search (16 -round DES requires 2^{47} chosen plaintexts pairs)

Computational cost of breaking DES

- DES was standardized 1975, and already 1977 there was an estimate that a machine to break it would cost \$20M (1977 dollars)
- DES was recertified in 1992 despite growing concerns
- One can use distributed computing, specialized hardware, or nowadays, cheap FPGAs
- In "the DES challenge" in 1997 the key was found in five months (distributed computation) having searched 25% of the key space (1998: 39 days, 85\%)
- 1998: EFF DES cracker, parallelized, $\$ 200 \mathrm{k}, 4.5$ days (on average)

Key length

Table 7.1: Minimum symmetric key-size in bits for various attackers.

Attacker	Budget	Hardware	Min security
"Hacker"	0	PC	58
	$<\$ 400$	PC(s)/FPGA	63
	0	$" M a l w a r e "$	77
Small organization	$\$ 10 \mathrm{k}$	PC(s)/FPGA	69
Medium organization	$\$ 300 \mathrm{k}$	FPGA/ASIC	69
Large organization	$\$ 10 \mathrm{M}$	FPGA/ASIC	78
Intelligence agency	$\$ 300 \mathrm{M}$	ASIC	84

From "ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)"

Key length

Table 7.1: Minimum symmetric key-size in bits for various attackers

Attacker	Budget	Hardware	Min security	(1996)
"Hacker"	0	PC	58	45
	$<\$ 400$	PC(s)/FPGA	63	50
	0	"Malware"	77	
Small organization	$\$ 10 \mathrm{k}$	PC(s)/FPGA	69	55
Medium organization	$\$ 300 \mathrm{k}$	FPGA/ASIC	69	60
Large organization	$\$ 10 \mathrm{M}$	FPGA/ASIC	78	70
Intelligence agency	$\$ 300 \mathrm{M}$	ASIC	84	75

From "ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)"

Key length

Table 7.4: Security levels (symmetric equivalent)

Security (bits)	Protection	Comment
32	Real-time, individuals	Only auth. tag size
64	Very short-term, small org	Not for confidentiality in new systems
72	Short-term, medium org Medium-term, small org	
80	Very short-term, agencies	Smallest general-purpose
	Long-term, small org	<4 years protection (E.g., use of 2-key 3DES, $<2^{40}$ plaintext/ciphertexts)
96	Legacy standard level	2-key 3DES restricted to 10^{6} plaintext/ciphertexts, ~ 10 years protection
112	Medium-term protection	~ 20 years protection (E.g., 3-key 3DES)
128	Long-term protection	Good, generic application-indep. Recommendation, ~ 30 years
256	"Foreseeable future"	Good protection against quantum computers unless Shor's algorithm applies.

From "ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010)"

Double DES

$$
E_{k_{2}}\left(E_{k_{1}}(m)\right) \neq E_{k_{3}}(m)
$$

Encrypt repeatedly with the keys consisting of all 0 s and all 1 s . The smallest n such that $\left(E_{0} \circ E_{1}\right)^{n}(m)=m$ is called the cycle length. If DES is a group, then $n<2^{56}$

Lemma: the smallest integer N such that $\left(E_{0} \circ E_{1}\right)^{N}(m)=m$ for all m contains all individual cycles as factors

An example has been found where the cycle lengths of 33 messages has the least common multiple of $10^{277} \gg 2^{56}$

Meet-in-the-middle attacks

- A meet-in-the-middle attack is a known plaintext attack
- Make a list of all 2^{56} possible (single-DES) encryptions of the plaintext, and of all 2^{56} (single-DES) decryptions of the ciphertext
- Match the two lists. The key(s) that give the same middle value is (are) the key (candidates)
- Attack is of complexity 2^{57}

Triple DES

More common:

Breaking three-key triple DES has a complexity of 2^{112}

Key length

Table 7.4: Security levels (symmetric equivalent)

Security (bits)	Protection	Comment
32	Real-time, individuals	Only auth. tag size
64	Very short-term, small org	Not for confidentiality in new systems
72	Short-term, medium org Medium-term, small org	
80	Very short-term, agencies	Smallest general-purpose
	Long-term, small org	<4 years protection (E.g., use of 2-key 3DES, $<2^{40}$ plaintext/ciphertexts)
96	Legacy standard level	2-key 3DES restricted to 10^{6} plaintext/ciphertexts, ~ 10 years protection
112	Medium-term protection	~ 20 years protection (E.g., 3-key 3DES)
128	Long-term protection	Good, generic application-indep. Recommendation, ~ 30 years
256	"Foreseeable future"	Good protection against quantum computers unless Shor's algorithm applies.

From "ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010)"

Next lecture

- AES
- Mathematics: intro to finite fields
- Modes of operation
- Message Authentication Codes, MACs

