
Cryptography Lecture 4
Block ciphers, DES, breaking DES

Breaking a cipher

• Eavesdropper recieves n cryptograms created from n plaintexts in
sequence, using the same key

• Redundancy exists in the messages

• There is always one n (the unicity distance) where only one value
for the key recreates a possible plaintext, unless we use OTP

Key Key

Alice Bob

Eve

Ek Dkm c m

Defence against breaking a cipher through exhaustive search

• Change key often enough, so that unicity distance is not reached
• OTP
• Approximation of OTP: Stream ciphers

• Make sure there are too many possible keys for exhaustive search
• Single-letter substitution is not enough, even though there are

26! ≈ 4 ∗ 1026 ≈ 288 combinations
• Encrypt larger blocks (than one-, two-, or three-letter

combinations)

Key Key

Alice Bob

Eve

+ +
m c m

Defence against breaking a cipher through exhaustive search

• Change key often enough, so that unicity distance is not reached
• OTP
• Approximation of OTP: Stream ciphers

• Make sure there are too many possible keys for exhaustive search
• Single-letter substitution is not enough, even though there are

26! ≈ 4 ∗ 1026 ≈ 288 combinations
• Encrypt larger blocks (than one-, two-, or three-letter

combinations)

Key Key

Alice Bob

Eve

Block
cipher

Block
cipherm c m

Caesar cipher

Permutation

Single letter
k from K

|K | = 26 ≈ 25

mi

Single letter
L = 26 ≈ 25

ci

k

Substitution cipher

Permutation

Permutation
k from K

|K | = 26! ≈ 288

mi

Single letter
L = 26 ≈ 25

ci

k

Playfair

Permutation

Key word
k from K

|K | . 170 000 ≈ 217

mi

Pair of letters
L = 262 ≈ 29

ci

k

Generic block cipher

Permutation

Key
k from K
|K | = (2n)!

mi

n-bit blocks
L = 2n

ci

k

Generic block cipher

Permutation

Key
k from K
|K | = (2n)!

mi

n-bit blocks
L = 2n

Too large
ci

k

Data Encryption Standard (1975)

Permutation

Key
k from K

|K | = 256 � (264)!

mi

64-bit blocks
L = 264

ci

k

Block ciphers v. codes

• The same block with the same key always produces the same
cryptogram, independent of its position in a sequence

• This is simple substitution on the block level

• An attacker could, in principle, create a table of all plaintext values
and their corresponding cryptograms, one table for each key, and
use this for cryptanalysis

• As defence, blocks and keys must be so large that there are too
many values to list in the table

Block cipher criteria

Diffusion If a plaintext character changes, several ciphertext
characters should change. This is a basic demand on a
block cipher, and ensures that the statistics used need to
be block statistics (as opposed to letter statistics)

Confusion Every bit of the ciphertext should depend on several bits
in the key. This can be achieved by ensuring that the
system is nonlinear

Diffusion: the avalanche effect

• A change in one bit in the input should propagate to many bits in
the output

The strict avalanche criterion

• A change in one bit in the input should change each output bit with
probability 1

2

• If this does not hold, an attacker can make predictions on the
input, given only the output

Build the system from components

Input L R

+

Output E (L) R

• Diffusion: A change in one bit in the input should change each
output bit with probability 1

2

• This is done by mixing the bits

• Use different functions depending on the key

• Confusion is created by using a nonlinear f

Build the system from components

Input L R

+ f

Output E (L) R

• Diffusion: A change in one bit in the input should change each
output bit with probability 1

2

• This is done by mixing the bits

• Use different functions depending on the key

• Confusion is created by using a nonlinear f

Build the system from components

Input L R

+ f

k

Output Ek(L) R

• Diffusion: A change in one bit in the input should change each
output bit with probability 1

2

• This is done by mixing the bits

• Use different functions depending on the key

• Confusion is created by using a nonlinear f

Build the system from components

Input L R

+ f

k

Output Ek(L) R

• Diffusion: A change in one bit in the input should change each
output bit with probability 1

2

• This is done by mixing the bits

• Use different functions depending on the key

• Confusion is created by using a nonlinear f

Feistel network

Input L0 R0

Round 1 + f

k1

L1 R1

Round 2 + f

k2

L2 R2

Feistel network

Input L0 R0

Round 1 + f

k1

L1 R1

Round 2 + f

k2

L2 R2

Substitution

Permutation

DES

L0 R0

Round 1 + f

k1

Round 2 + f

...

k2

L16 R16

(16 rounds)

Input IP

OutputIP−1

DES

IP
b58 b50 b42 b34 b26 b18 b10 b2
b60 b52 b44 b36 b28 b20 b12 b4
b62 b54 b46 b38 b30 b22 b14 b6
b64 b56 b48 b40 b32 b24 b16 b8
b57 b49 b41 b33 b25 b17 b9 b1
b59 b51 b43 b35 b27 b19 b11 b3
b61 b53 b45 b37 b29 b21 b13 b5
b63 b55 b47 b39 b31 b23 b15 b7

DES

L0 R0

Round 1 + f

k1

Round 2 + f

...

k2

L16 R16

(16 rounds)

Input IP

OutputIP−1

DES
Ri

f

Expander

+ki

Permutation

S1 S2 S3 S4 S5 S6 S7 S8

f (Ri , ki)

32 bits

48 bits

6 bits

4 bits

32 bits

DES

Expander
b32 b1 b2 b3 b4 b5 b6 b7 b8 b9
b8 b9 b10 b11 b12 b13 b14 b15 b16 b17
b16 b17 b18 b19 b20 b21 b22 b23 b24 b25
b24 b25 b26 b27 b28 b29 b30 b31 b32 b1

Permutation
b16 b7 b20 b21 b29 b12 b28 b17
b1 b15 b23 b26 b5 b18 b31 b10
b2 b8 b24 b14 b32 b27 b3 b9
b19 b13 b30 b6 b22 b11 b4 b25

DES

S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
row index: b1b6, column index: b2b3b4b5

b1b2b3b4b5b6

DES
Ri

f

Expander

+ki

Permutation

S1 S2 S3 S4 S5 S6 S7 S8

f (Ri , ki)

32 bits

48 bits

6 bits

4 bits

32 bits

DES

L0 R0

Round 1 + f

k1

Round 2 + f

...

k2

L16 R16

(16 rounds)

Input IP

OutputIP−1

DES key schedule

Key

56 bits

Key-permutation

C0 D0

Rotation Rotation

C1 D1

Rotation Rotation

...
...

Choice k1

48 bits

Each key bit is used in
(close to) 14 of 16 rounds

DES

S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
row index: b1b6, column index: b2b3b4b5

• There was a lot of controversy surrounding the S-box construction

• People were worried there were backdoors in the system

• But in the late eighties it was found that even small changes in the
S-boxes gave a weaker system

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM
published the construction criteria

• Each S-box has 6 input bits and four output bits (1970’s hardware
limit)

• The S-boxes should not be linear functions, or even close to linear

• Each row of an S-box contains all numbers from 0 to 15

• Two inputs that differ by 1 bit should give outputs that differ by at
least 2 bits

• Two inputs that differ in the first 2 bits but are equal in the last 2
bits should give unequal outputs

• There are 32 pairs of inputs with a given XOR. No more than eight
of the corresponding outputs should have equal XORs

• A similar criterion involving three S-boxes

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM
published the construction criteria

• Each S-box has 6 input bits and four output bits (1970’s hardware
limit)

• The S-boxes should not be linear functions, or even close to linear

• Each row of an S-box contains all numbers from 0 to 15

• Two inputs that differ by 1 bit should give outputs that differ by at
least 2 bits

• Two inputs that differ in the first 2 bits but are equal in the last 2
bits should give unequal outputs

• There are 32 pairs of inputs with a given XOR. No more than eight
of the corresponding outputs should have equal XORs

• A similar criterion involving three S-boxes

Linearity

• A function f from is linear if

f (ax + by) = a f (x) + b f (y)

• Example: f (t) = 7t is linear

• A (close to) linear system is much easier to analyse

• Therefore, you cannot use only simple mathematical functions

Linear cryptanalysis

• Make a linear approximation of the cipher

• This will have k as parameter

• Use many plaintext-ciphertext pairs to deduce which linear
approximation is the best, and this will correspond to the most
likely key

Key Key

Alice Bob

Eve

Ek Dkm c m

Prohibit linear cryptanalysis

Examples:

• f (t) = 7t is linear

• but f (t) = (7t mod 8) in the ring of numbers mod 16
is nonlinear, because f (2) 6= 2f (1):

f (2) = (14 mod 8) = 6 6= 2f (1) = 2(7 mod 8) = 14

• of course f (t) = (7t mod 8) is linear in the ring of numbers mod 8

Prohibit linear analysis
Ri

f
Expander

+ki

Permutation

S1 S2 S3 S4 S5 S6 S7 S8

f (Ri , ki)

32 bits

48 bits

6 bits

4 bits

32 bits

• In DES, smaller blocks are used in each step, and are combined to
create non-linearity with respect to the larger blocks

• The S-box itself is also chosen to be non-linear

Linear cryptanalysis of DES

• Make a linear approximation of the S-boxes

• Combine these into a linear approximation of the whole cipher

• This will have k as parameter

• Use many plaintext-ciphertext pairs to deduce which linear
approximation is the best, and this will correspond to the most
likely key

• Needs 243 plaintext-ciphertext pairs for DES

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM
published the construction criteria

• Each S-box has 6 input bits and four output bits (1970’s hardware
limit)

• The S-boxes should not be linear functions, or even close to linear

• Each row of an S-box contains all numbers from 0 to 15

• Two inputs that differ by 1 bit should give outputs that differ by at
least 2 bits

• Two inputs that differ in the first 2 bits but are equal in the last 2
bits should give unequal outputs

• There are 32 pairs of inputs with a given XOR. No more than eight
of the corresponding outputs should have equal XORs

• A similar criterion involving three S-boxes

DES

After the (re-)discovery of differential cryptanalysis, in 1994 IBM
published the construction criteria

• Each S-box has 6 input bits and four output bits (1970’s hardware
limit)

• The S-boxes should not be linear functions, or even close to linear

• Each row of an S-box contains all numbers from 0 to 15

• Two inputs that differ by 1 bit should give outputs that differ by at
least 2 bits

• Two inputs that differ in the first 2 bits but are equal in the last 2
bits should give unequal outputs

• There are 32 pairs of inputs with a given XOR. No more than eight
of the corresponding outputs should have equal XORs

• A similar criterion involving three S-boxes

DES
Ri

f

Expander

+ki

Permutation

S1 S2 S3 S4 S5 S6 S7 S8

f (Ri , ki)

32 bits

48 bits

6 bits

4 bits

32 bits

Simple(r) Encryption System
Ri

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (Ri , ki)

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

6 bits

8 bits

4 bits

3 bits
6 bits

A one-round Feistel network is trivial to break

Input L0 R0

Round 1 + f

k1

L1 R1

A known-plaintext attack breaks the system, because then you know R0

and f (R0, k1) = R1 ⊕ L0, so you can find k1

A one-round Feistel network is trivial to break

Input L0 R0

Round 1 + f

k1

L1 = R0 R1 = L0 ⊕ f (R0, k1)

A known-plaintext attack breaks the system, because then you know R0

and f (R0, k1) = R1 ⊕ L0, so you can find k1

Simple(r) Encryption System, example
R1 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+k1

f (R1, k1) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

6 bits

8 bits

4 bits

3 bits
6 bits

Simple(r) Encryption System, example
R1 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+k1

f (R1, k1) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

101110

10111110

1011⊕ kh
1

100

1110⊕ k l
1

011
100011

Simple(r) Encryption System, example
R1 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+k1

f (R1, k1) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

101110

10111110

1011⊕ kh
1

100

1110⊕ k l
1

011
100011

1001
kh
1 = 0010

0101
kh
1 = 0111

1001
k l
1 = 0111

0110
k l
1 = 1001

A two-round Feistel network is trivial to break
Input L0 R0

Round 1 + f

k1

R0 L0 ⊕ f (R0, k1)

Round 2 + f

k2

L0 ⊕ f (R0, k1) R0 ⊕ f (L2, k2)

Use the same method twice: (R0, f (R0, k1) = L2 ⊕ L0);
(L2, f (L2, k2) = R2 ⊕ R0), this gives two alternatives each for k1 and k2.
Now, the key schedule may rule out some combinations.

A three-round Feistel network is simple to break

L0 R0

R0 L0 ⊕ f (R0, k1)

L0 ⊕ f (R0, k1) L3

L3 R3 = L0 ⊕ f (R0, k1)⊕ f (L3, k3)

Perform two known-plaintext attacks for L0R0 and L∗0R
∗
0 with R0 = R∗

0 .
Then, the outputs have the relation

R3 ⊕ R∗
3 = L0 ⊕ L∗0 ⊕ f (L3, k3)⊕ f (L∗3 , k3)

We have L3 ⊕ L∗3 and f (L3, k3)⊕ f (L∗3 , k3)

Simple(r) Encryption System, given XOR
L3 ⊕ L∗3 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (L3, k3)⊕ f (L∗3 , k3) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(L3)⊕ E(L∗
3) = 10111110

XOR: 1011

XOR: 100

Simple(r) Encryption System, given XOR
L3 ⊕ L∗3 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (L3, k3)⊕ f (L∗3 , k3) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(L3)⊕ E(L∗
3) = 10111110

XOR: 1011

XOR: 100

E(L3)⊕ k3 E(L∗3)⊕ k3 Out XOR
0000 1011 111
0001 1010 100
0010 1001 101
0011 1000 111
0100 1111 000
0101 1110 001
0110 1101 000
0111 1100 000
1000 0011 111
1001 0010 101
1010 0001 100
1011 0000 111
1100 0111 000
1101 0110 000
1110 0101 001
1111 0100 000

Simple(r) Encryption System, given XOR
L3 ⊕ L∗3 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (L3, k3)⊕ f (L∗3 , k3) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(L3)⊕ E(L∗
3) = 10111110

XOR: 1011

XOR: 100

E(L3)⊕ k3 E(L∗3)⊕ k3 Out XOR
0000 1011 111
0001 1010 100
0010 1001 101
0011 1000 111
0100 1111 000
0101 1110 001
0110 1101 000
0111 1100 000
1000 0011 111
1001 0010 101
1010 0001 100
1011 0000 111
1100 0111 000
1101 0110 000
1110 0101 001
1111 0100 000

Simple(r) Encryption System, given XOR
L3 ⊕ L∗3 = 101110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (L3, k3)⊕ f (L∗3 , k3) = 100011

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(L3)⊕ E(L∗
3) = 10111110

XOR: 1011

XOR: 100

E(L3)⊕ k3 E(L∗3)⊕ k3 Out XOR
0000 1011 111
0001 1010 100
0010 1001 101
0011 1000 111
0100 1111 000
0101 1110 001
0110 1101 000
0111 1100 000
1000 0011 111
1001 0010 101
1010 0001 100
1011 0000 111
1100 0111 000
1101 0110 000
1110 0101 001
1111 0100 000

A three-round Feistel network is simple to break

L0 R0

R0 L0 ⊕ f (R0, k1)

L0 ⊕ f (R0, k1) L3

L3 R3 = L0 ⊕ f (R0, k1)⊕ f (L3, k3)

Choose R0 = R∗
0 so that f (R0, k1)⊕ f (R∗

0 , k1) = 0. Then, we can
calculate f (L3, k3)⊕ f (L∗3 , k3)

A four-round Feistel network is more complicated to break

L0 R0

L1 R1

R1 L1 ⊕ f (R1, k2)

L1 ⊕ f (R1, k2) L4 = L0 ⊕ f (R0, k1)⊕ f (L3, k3)

L4 R4 = L1 ⊕ f (R1, k2)⊕ f (L4, k4)

Here, if we can guess f (R1, k2)⊕ f (R∗
1 , k2) (even if it is 6= 0), we can

calculate f (L4, k4)⊕ f (L∗4 , k4)

Simple(r) Encryption System, given XOR
R1 ⊕ R∗

1 = 001110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (R1, k2)⊕ f (R∗
1 , k2) =?

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(R1)⊕ E(R∗
1) = 00111110

XOR: 0011

XOR: ?

Simple(r) Encryption System, given XOR
R1 ⊕ R∗

1 = 001110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (R1, k2)⊕ f (R∗
1 , k2) =?

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(R1)⊕ E(R∗
1) = 00111110

XOR: 0011

XOR: ?

E(R1)⊕ k2 E(R∗
1)⊕ k2 Out XOR

0000 0011 011
0001 0010 011
0010 0001 011
0011 0000 011
0100 0111 011
0101 0110 011
0110 0101 011
0111 0100 011
1000 1011 011
1001 1010 010
1010 1001 010
1011 1000 011
1100 1111 011
1101 1110 010
1110 1101 010
1111 1100 011

Simple(r) Encryption System, given XOR
R1 ⊕ R∗

1 = 001110

f

Expander
b1 b2 b4 b3 b4 b3 b5 b6

+ki

f (R1, k2)⊕ f (R∗
1 , k2) =?

S1
5 2 1 6 3 4 7 0
1 4 6 2 0 7 5 3

S2
4 0 6 5 7 1 3 2
5 3 0 7 6 2 1 4

E(R1)⊕ E(R∗
1) = 00111110

XOR: 0011

XOR: ?

E(R1)⊕ k2 E(R∗
1)⊕ k2 Out XOR

0000 0011 011
0001 0010 011
0010 0001 011
0011 0000 011
0100 0111 011
0101 0110 011
0110 0101 011
0111 0100 011
1000 1011 011
1001 1010 010
1010 1001 010
1011 1000 011
1100 1111 011
1101 1110 010
1110 1101 010
1111 1100 011

Warning!

A four-round Feistel network is more complicated to break

L0 R0

L1 R1

R1 L1 ⊕ f (R1, k2)

L1 ⊕ f (R1, k2) L4 = L0 ⊕ f (R0, k1)⊕ f (L3, k3)

L4 R4 = L1 ⊕ f (R1, k2)⊕ f (L4, k4)

Here, if we can guess f (R1, k2)⊕ f (R∗
1 , k2) (even if it is 6= 0), we can

calculate f (L4, k4)⊕ f (L∗4 , k4)

Take random input pairs, and use the most likely output XOR to deduce
the most likely k4

DES

The seemingly strange criterion is to prohibit differential cryptanalysis

• There are 32 pairs of inputs with a given XOR. No more than eight
of the corresponding outputs should have equal XORs

The designers knew about differential cryptanalysis

Still, it works on DES, and breaks 15-round DES faster than exhaustive
search (16-round DES requires 247 chosen plaintexts pairs)

Computational cost of breaking DES

• DES was standardized 1975, and already 1977 there was an
estimate that a machine to break it would cost $20M (1977 dollars)

• DES was recertified in 1992 despite growing concerns

• One can use distributed computing, specialized hardware, or
nowadays, cheap FPGAs

• In “the DES challenge” in 1997 the key was found in five months
(distributed computation) having searched 25% of the key space
(1998: 39 days, 85%)

• 1998: EFF DES cracker, parallelized, $200k, 4.5 days (on average)

Key length

Table 7.1: Minimum symmetric key-size in bits for various attackers.

Attacker Budget Hardware Min security
“Hacker” 0 PC 58

< $400 PC(s)/FPGA 63
0 ”Malware” 77

Small organization $10k PC(s)/FPGA 69
Medium organization $300k FPGA/ASIC 69
Large organization $10M FPGA/ASIC 78
Intelligence agency $300M ASIC 84

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”

Key length

Table 7.1: Minimum symmetric key-size in bits for various attackers

Attacker Budget Hardware Min security (1996)
“Hacker” 0 PC 58 45

< $400 PC(s)/FPGA 63 50
0 ”Malware” 77

Small organization $10k PC(s)/FPGA 69 55
Medium organization $300k FPGA/ASIC 69 60
Large organization $10M FPGA/ASIC 78 70
Intelligence agency $300M ASIC 84 75

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012)”

Key length
Table 7.4: Security levels (symmetric equivalent)

Security Protection Comment
(bits)

32 Real-time, individuals Only auth. tag size
64 Very short-term, small org Not for confidentiality in new systems
72 Short-term, medium org

Medium-term, small org
80 Very short-term, agencies Smallest general-purpose

Long-term, small org < 4 years protection
(E.g., use of 2-key 3DES,
< 240 plaintext/ciphertexts)

96 Legacy standard level 2-key 3DES restricted to 106 plain-
text/ciphertexts,
∼ 10 years protection

112 Medium-term protection ∼ 20 years protection
(E.g., 3-key 3DES)

128 Long-term protection Good, generic application-indep.
Recommendation, ∼ 30 years

256 ”Foreseeable future” Good protection against quantum computers
unless Shor’s algorithm applies.

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010)”

Double DES

DES DES
Cleartext Ciphertext

k1 k2

Ek2

(
Ek1(m)

)
6= Ek3(m)

Encrypt repeatedly with the keys consisting of all 0s and all 1s. The
smallest n such that (E0 ◦ E1)

n(m) = m is called the cycle length. If DES
is a group, then n < 256

Lemma: the smallest integer N such that (E0 ◦ E1)
N(m) = m for all m

contains all individual cycles as factors

An example has been found where the cycle lengths of 33 messages
has the least common multiple of 10277 � 256

Meet-in-the-middle attacks

• A meet-in-the-middle attack is a known plaintext attack

• Make a list of all 256 possible (single-DES) encryptions of the
plaintext, and of all 256 (single-DES) decryptions of the ciphertext

• Match the two lists. The key(s) that give the same middle value is
(are) the key (candidates)

• Attack is of complexity 257

Triple DES

Ek1 Ek2 Ek3

Cleartext Ciphertext

k1 k2 k3

More common:

Ek1 Dk2 Ek3

Cleartext Ciphertext

k1 k2 k3

Breaking three-key triple DES has a complexity of 2112

Key length
Table 7.4: Security levels (symmetric equivalent)

Security Protection Comment
(bits)

32 Real-time, individuals Only auth. tag size
64 Very short-term, small org Not for confidentiality in new systems
72 Short-term, medium org

Medium-term, small org
80 Very short-term, agencies Smallest general-purpose

Long-term, small org < 4 years protection
(E.g., use of 2-key 3DES,
< 240 plaintext/ciphertexts)

96 Legacy standard level 2-key 3DES restricted to 106 plain-
text/ciphertexts,
∼ 10 years protection

112 Medium-term protection ∼ 20 years protection
(E.g., 3-key 3DES)

128 Long-term protection Good, generic application-indep.
Recommendation, ∼ 30 years

256 ”Foreseeable future” Good protection against quantum computers
unless Shor’s algorithm applies.

From “ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010)”

Next lecture

• AES

• Mathematics: intro to finite fields

• Modes of operation

• Message Authentication Codes, MACs

