
Cryptography Lecture 2
Foundations and basic theory



What we will do this lecture

• the One Time Pad (OTP), the only unbreakable cipher

• Shannon’s information theory, that proves this

• the central role of statistics in cryptography

Remember to register for
the laboratory sessions in lisam



Methods to break a cipher

• In order to break a cipher you could

• Try all possible keys (exhaustive search)
• Use plaintext alphabet statistics
• Use both single letter statistics, and digram, trigram, and

word statistics
• Do calculations adjusted to the algorithm

• Will these methods always work?

• If yes, why? How can I be sure?
• If no, will they work under specific conditions? Then what

conditions?
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These are the main attack possibilities

Ciphertext only Use properties of the plaintext such as
statistics of the language

Known plaintext Allows simple deduction of the key in
some ciphers, but not in others

Chosen plaintext In some ciphers, there are weak mes-
sages that reveal the key. In other
cases, pairs of chosen plaintexts to-
gether reveal properties of the key

Chosen ciphertext Adds the reverse transformation, say in
some systems that let you test decryp-
tion of a number of encrypted texts



Possible results

Find the key Complete break, the final goal
of cryptanalysis

Finding more plaintext than
you already have

Sometimes a complete break
is not possible, but a partial
break can be very useful

Finding correct cryptograms
for some plaintexts

Important in authentication
schemes



Examples

• Finding the key of Caesar through exhaustive search

• Finding more plaintext letters in a Vigenère cipher, when the
originally known plaintext is shorter than the key

• Recognition of common blocks in block ciphers

• Finding another message with the same RSA signature as a
received message



Shannon

• Developed a theoretical measure of information, based on the
receiver’s initial uncertainty

H(x) = −
∑
x

p(X = x) log2 p(X = x)

• Used this to create measures
and a theory for technical
communication

• Based this on his wartime
work on ciphers



Probability theory

• Random variable: each value occurs with a probability

p(X = x)

• A collection of values (event) has a probability

p(A) =
∑
x∈A

p(X = x)

• The average value (expectation) can be calculated as

E (X ) =
∑
x

x p(X = x)



Probability theory

• Random variable: each value occurs with a probability

p(X = x)

• A collection of values (event) has a probability

p(A) =
∑
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=

∑
x

f (x) p(X = x)



Example: letter distribution

1
26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• An even distribution would look like the above

• But the single letter distribution of English is uneven
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Breaking Caesar cipher sequence HWJFX

(single letter probability, in the middle of the cryptogram)

Key Plaintext Probability
A HWJFX 0.053
B G 0.020
C F 0.029
D E 0.131
E D 0.038
F C 0.028
G B 0.014
H A 0.082
I Z 0.001
J Y 0.020
K X 0.002
L W 0.015
M V 0.009

Key Plaintext Probability
N U 0.025
O T 0.105
P S 0.061
Q R 0.068
R Q 0.001
S P 0.020
T O 0.080
U N 0.071
V M 0.025
W L 0.034
X K 0.004
Y J 0.001
Z I 0.063



Breaking Caesar cipher sequence HWJFX

(from single letter probabilities)

Key Plaintext Probability
A HWJFX 0.0008
B GV 0.0002
C FU 0.0007
D ET 0.0138
E DS 0.0023
F CR 0.0019
G BQ <0.00005
H AP 0.0016
I ZO 0.0001
J YN 0.0014
K XM 0.0001
L WL 0.0005
M VK <0.00005

Key Plaintext Probability
N UJ <0.00005
O TI 0.0066
P SH 0.0032
Q RG 0.0014
R QF <0.00005
S PE 0.0026
T OD 0.0030
U NC 0.0020
V MB 0.0004
W LA 0.0028
X KZ <0.00005
Y JY <0.00005
Z IX 0.0001
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Digram distribution is not a product of two single-letter
distributions

• In English text,

p(X = T,Y = H) > p(X = T)p(Y = H)

• In fact,
p(X = T)p(Y = H) = 0.105 · 0.053 = 0.0056

while
p(X = T,Y = H) = 0.0244

• Two random variables are said to be independent if

p(X = x ,Y = y) = p(X = x)p(Y = y)



Breaking Caesar cipher sequence HWJFX

(from single letter probabilities)

Key Plaintext Probability
A HWJFX 0.0008
B GV 0.0002
C FU 0.0007
D ET 0.0138
E DS 0.0023
F CR 0.0019
G BQ <0.00005
H AP 0.0016
I ZO 0.0001
J YN 0.0014
K XM 0.0001
L WL 0.0005
M VK <0.00005

Key Plaintext Probability
N UJ <0.00005
O TI 0.0066
P SH 0.0032
Q RG 0.0014
R QF <0.00005
S PE 0.0026
T OD 0.0030
U NC 0.0020
V MB 0.0004
W LA 0.0028
X KZ <0.00005
Y JY <0.00005
Z IX 0.0001



Breaking Caesar cipher sequence HWJFX

(Digram probabilities)

Key Plaintext Probability
A HWJFX 0.0004
B GV <0.00005
C FU 0.0013
D ET 0.0059
E DS 0.0021
F CR 0.0025
G BQ <0.00005
H AP 0.0034
I ZO <0.00005
J YN <0.00005
K XM <0.00005
L WL <0.00005
M VK <0.00005

Key Plaintext Probability
N UJ <0.00005
O TI 0.0189
P SH 0.0059
Q RG 0.0008
R QF <0.00005
S PE 0.0055
T OD 0.0025
U NC 0.0080
V MB <0.00005
W LA 0.0088
X KZ <0.00005
Y JY <0.00005
Z IX 0.0008



Probability theory: several random variables

• Random variables: each pair of values occurs with a probability

p(X = x ,Y = y)

• Single-value probabilities can be calculated using

p(Y = y) =
∑
x

p(X = x ,Y = y)

• The conditional probability can be calculated as

p(Y = y |X = x) =
p(X = x ,Y = y)

p(X = x)



Probability theory: several random variables, example

• Random variables: each pair of values occurs with a probability

p(X = T,Y = H) = 0.0244

• Single-value probabilities can be calculated using

p(Y = H) =
∑

x∈alphabet

p(X = x ,Y = H)

• The conditional probability can be calculated as

p(Y = H|X = T) =
p(X = T,Y = H)

p(X = T)
=

0.0244

0.105
= 0.232,

compare with
p(Y = H) = 0.053



Breaking Caesar cipher sequence HWJFX

(Digram probabilities)

Key Plaintext Probability
A HWJFX 0.0004
B GV <0.00005
C FU 0.0013
D ET 0.0059
E DS 0.0021
F CR 0.0025
G BQ <0.00005
H AP 0.0034
I ZO <0.00005
J YN <0.00005
K XM <0.00005
L WL <0.00005
M VK <0.00005

Key Plaintext Probability
N UJ <0.00005
O TI 0.0189
P SH 0.0059
Q RG 0.0008
R QF <0.00005
S PE 0.0055
T OD 0.0025
U NC 0.0080
V MB <0.00005
W LA 0.0088
X KZ <0.00005
Y JY <0.00005
Z IX 0.0008



Breaking Caesar cipher sequence HWJFX

(Digram probabilities, conditioned on the possible combinations)

Key Plaintext Probability
A HWJFX 0.0063
B GV <0.00005
C FU 0.0189
D ET 0.0881
E DS 0.0314
F CR 0.0377
G BQ <0.00005
H AP 0.0503
I ZO <0.00005
J YN <0.00005
K XM <0.00005
L WL <0.00005
M VK <0.00005

Key Plaintext Probability
N UJ <0.00005
O TI 0.2830
P SH 0.0881
Q RG 0.0126
R QF <0.00005
S PE 0.0818
T OD 0.0377
U NC 0.1195
V MB <0.00005
W LA 0.1321
X KZ <0.00005
Y JY <0.00005
Z IX 0.0126



Breaking Caesar cipher sequence HWJFX

(Digram probabilities, conditioned on the possible combinations)

Key Plaintext Probability
A HWJFX 0.0063
B GV <0.00005
C FU 0.0189
D ET 0.0881
E DS 0.0314
F CR 0.0377
G BQ <0.00005
H AP 0.0503
I ZO <0.00005
J YN <0.00005
K XM <0.00005
L WL <0.00005
M VK <0.00005

Key Plaintext Probability
N UJ <0.00005
O TI 0.2830
P SH 0.0881
Q RG 0.0126
R QF <0.00005
S PE 0.0818
T OD 0.0377
U NC 0.1195
V MB <0.00005
W LA 0.1321
X KZ <0.00005
Y JY <0.00005
Z IX 0.0126

p(TI) = 0.0189
p(TI | HW or GV or . . . ) = 0.2830



Breaking Caesar cipher sequence HWJFX

(conditioning on trigrams)

Key Plaintext Probability
A HWJFX <0.00005
B GV
C FUH <0.00005
D ETG <0.00005
E DSF <0.00005
F CRE 0.1111
G BQ
H APC <0.00005
I ZO
J YN
K XM
L WL
M VK

Key Plaintext Probability
N UJ
O TIV 0.1667
P SHU 0.0056
Q RGT <0.00005
R QF
S PER 0.4389
T ODQ <0.00005
U NCP <0.00005
V MB
W LAN 0.2500
X KZ
Y JY
Z IXK <0.00005



Breaking Caesar cipher sequence HWJFX

(conditioning on 4-grams)

Key Plaintext Probability
A HWJFX
B GV
C FUH
D ETG
E DSF
F CREA 0.3673
G BQ
H APC
I ZO
J YN
K XM
L WL
M VK

Key Plaintext Probability
N UJ
O TIVR <0.00005
P SHUQ <0.00005
Q RGT
R QF
S PERN 0.6327
T ODQ
U NCP
V MB
W LANJ <0.00005
X KZ
Y JY
Z IXK



Breaking Caesar cipher sequence HWJFX

(conditioning on 5-grams)

Key Plaintext Probability
A HWJFX
B GV
C FUH
D ETG
E DSF
F CREAS ≈1
G BQ
H APC
I ZO
J YN
K XM
L WL
M VK

Key Plaintext Probability
N UJ
O TIVR
P SHUQ
Q RGT
R QF
S PERNF ≈0
T ODQ
U NCP
V MB
W LANJ
X KZ
Y JY
Z IXK



Why is a five-letter cryptogram enough?

• Initially, the key can be any of the 26 possible values

• You need roughly 5 bits of information (25 = 32, so actually 4.75
bits) to determine the key value, and each cryptogram letter gives
you some information

• Depending on the cleartext, the information you receive is different.
The plaintext distribution gives the average information gain.

• This is measured using the notion of Shannon entropy. English
text has an entropy of close to one bit per letter



Shannon entropy

• If there is only one alternative, no new information is gained by
seeing the next letter

• If there are several possible alternatives, the gained information is
the number of bits you need to identify one alternative

• With even distribution, just under five bits (log2 26 < log2 32 = 5)

A B C D E F G H I J K L M N O P Q R

S T U V X Y Z



Shannon entropy

• If there is only one alternative, no new information is gained by
seeing the next letter

• If there are several possible alternatives, the gained information is
the number of bits you need to identify one alternative

• With even distribution, just under five bits (log2 26 < log2 32 = 5, or
-log2 p = − log2(1/26))
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S T U V X Y Z



Shannon entropy

E T

A O I N S R H

D L U C M F Y

W G P B V

K

J Z X Q

• If some alternatives are more
probable than others, you can gain bits
used by using a shorter code for the more
probable cases (a Huffman code)

• The tree is arranged so that nodes on a given
level have the same probability

• This means that the probability halves for each level



Shannon entropy

E T

A O I N S R H

D L U C M F Y

W G P B V

K

J Z X Q

• You use three bits to
encode E, and this happens with
probability 1/8 = 2−3

• You use 9 bits to encode Q, and this
happens with probability 1/512 = 2−9

• The information that is needed to identify each
letter is logarithmic in the probability
of the alternatives



Shannon entropy

• The number of bits that you need to encode the letter R is
(approximately)

− log2 p(X = R)

• The average is therefore

H(X ) = −
∑
x

p(X = x) log2 p(X = x)

• This quantifies the average information needed to encode one
symbol in the stream

• Or, equivalently, the average information gained by the recipient,
for each symbol in the stream



Shannon entropy ≈ “Expected surprise”

E T

A O I N S R H

D L U C M F Y

W G P B V

K

J Z X Q

• The number of bits that
you need to encode the letter R
is (approximately) − log2 p(X = R)

• The average is therefore
H(X ) = −

∑
x p(X = x) log2 p(X = x)

• Sometimes this is read as the “expected
surprise” of the next symbol in the stream



Shannon entropy: several random variables

• The joint entropy is

H(X ,Y ) = −
∑
x

∑
y

p(X = x ,Y = y) log2 p(X = x ,Y = y)

• The conditional entropy is

H(Y |X ) =
∑
x

p(X = x)H(Y |X = x)

= −
∑
x

p(X = x)
(∑

y

p(Y = y |X = x) log2 p(Y = y |X = x)
)

= −
∑
x

∑
y

p(X = x ,Y = y) log2 p(Y = y |X = x)

• Note that the conditional entropy

H(Y |X ) ̸= −
∑
x

∑
y

p(Y = y |X = x) log2 p(Y = y |X = x)



Shannon entropy: several random variables

Theorem (Chain rule):

H(X ,Y ) = H(X ) + H(Y |X )

Theorem:

1. H(X ) ≤ log2 |{possible values of X}|, with equality only if X is
uniformly distributed

2. H(X ,Y ) ≤ H(X ) + H(Y ), with equality only if X and Y are
independent

3. H(Y |X ) ≤ H(Y ), with equality only if X gives no information on Y



Defining properties of the Shannon entropy

Shannon put forward the following requirements on his proposed
measure of uncertainty (or information gain):

1. The number H(X ) should not depend on the possible values of X ,
but only on the distribution

2. Small changes in the probabilities should give small changes in
H(X ) (continuity)

3. If X and Y are both uniformly distributed, but there are more
possible values for Y , then H(X ) < H(Y )

4. If Z has the same distribution as X , except that two outcomes (xi
and xj , say) have been joined into one in Z , then
H(X ) = H(Z ) + p(X = xi or xj)H(X |X = xi or xj)

Theorem (Shannon, 1948): The only function that obeys these four is

H(X ) = −
∑
x

p(X = x) logb p(X = x)



Shannon entropy and Huffman codes

E T

A O I N S R H

D L U C M F Y

W G P B V

K

J Z X Q

Theorem: If L is the average
number of bits per output symbol of a
Huffman code for the random variable X , then

H(X ) ≤ L ≤ H(X ) + 1



The entropy of English

• A uniformly distributed random letter would have entropy
log2 26 = 4.7

• With a single letter X1 and the immediately following letters X2, X3,
. . . , from English text

H(X1) = 4.18

H(X2|X1) = 3.56

H(X3|X2,X1) = 3.3

• The average entropy of the whole trigram is

H(X1,X2,X3)

3
=

H(X1) + H(X2|X1) + H(X3|X2,X1)

3
= 3.68

• The average entropy over long sequences of English text

lim
n→∞

H(X1, ... ,Xn)

n
≈ 1.5



The redundancy of English

• A uniformly distributed random letter would have entropy
log2 26 = 4.7

• The average entropy over long sequences of English text

lim
n→∞

H(X1, ... ,Xn)

n
≈ 1.5

• Therefore, roughly two bits out of three are not needed. The
redundancy R of English written text is ∼68%



Formal Shannon model

• A cipher is a set of invertible functions Ek plaintexts m ∈ M to
cryptograms c ∈ C

• For each Ek there is a corresponding decrypting function Dk such
that Dk

(
Ek(m)

)
= m for all m

• The value k ∈ K deciding the choice of a specific Ek is the key

Key Key

Alice Bob

Eve

Ek Dkm c m



Formal Shannon model

Key Key

Alice Bob

Eve

EK DK
M C M

• To Eve, the plaintext is a random variable M, the key is a random
variable K , and the cryptogram is a random variable C

• The ciphertext C (and knowledge about EK ) gives you knowledge
about M, measured by H(M|C )

• A known-plaintext attack is intended to give you K , and this can be
measured by H(K |M,C )



Unicity distance

• The unicity distance is a measure of the length of ciphertext at
which there is only one possible plaintext

• A rough estimate is (K = set of keys, L = set of letters)

n0 =
log2 |K|
R log2 |L|

• If the redundancy is 0 (all messages are equally possible), the
distance can be infinite, in which case even exhaustive search will
not help

• Even with a finite unicity distance, it can be very complicated to
find the key



The One Time Pad is the only theoretically secure cipher

• Created by Vernam and Mauborgne (OTP), 1918

• Do Vigenère with a randomly chosen key as long as the message

• A cryptosystem has perfect secrecy if H(M|C ) = H(M)

Theorem: The one time pad has perfect secrecy

Proof: see the course book



Why the OTP is secure

• Suppose you have a cryptogram and the complete statistics for
every possible plaintext of the same length.

• For each possible plaintext there is a corresponding key
encrypting that plaintext into the given cryptogram.

• Every key is exactly as likely as another; thus you have no clue to
which plaintext is the more likely one, except what you already
knew before getting the cryptogram.



How (not) to use OTP

• Never, ever reuse a key!

• If the key sequence is not truly random, it is NOT OTP.

• You must generate a truly random key sequence equally long as
the message, and then find a secure channel for transportation of
that key to the intended message recipient. . .



How (not) to use OTP

• In 1945, Soviets used the same OTP twice for two different
communication lines. Even though one was first encrypted via a
code book, the presence of known British government documents
(known plaintext) allowed breaking the OTP system.

• Some Soviet spies used OTP with pads generated by typists using
actual typewriters. This is generally a bad idea because people
are not good at generating random sequences.



Shannon entropy is not suitable for all purposes

Key Key

Alice Bob

Eve

SK VK
M (M,T ) M?

• Alice creates a signature, the “tag” t ∈ T of the message

• Bob verifies that the tag has been generated using the correct key

• Eve does not want to decode Alice’s tag, but uses it to generate a
tag for her own message that goes through Bob’s verification



For signatures, the “guessing entropy” is a better measure

Key Key

Alice Bob

Eve

SK VK
M (M,T ) M?

• The tag gives Eve information about K ’s distribution, and she uses
it to generate a tag for her own message

• She doesn’t gain enough information to calculate the tag, she
must guess the tag value

• She uses the most probable value for her guess



For signatures, the “guessing entropy” is a better measure

Key Key

Alice Bob
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• The tag gives Eve information about K ’s distribution, and she uses
it to generate a tag for her own message
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must guess the tag value
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For signatures, the “guessing entropy” is a better measure

Key Key

Alice Bob

Eve

SK VK
M (M,T ) M?

• The tag gives Eve information about K ’s distribution, and she uses
it to generate a tag for her own message

• She doesn’t gain enough information to calculate the tag, she
must guess the tag value

• The appropriate measure is the “guessing entropy” (or
min-entropy)

H∞(X ) = − log2 max
x

p(X = x) = min
x

(
− log2 p(X = x)

)



These two kinds of entropy are the important ones for us

• Shannon entropy (“source-coding entropy”)

H(X ) = −
∑
x

p(X = x) log2 p(X = x)

• Vernam cipher (“one-time pad”)
The cryptogram leaks no information on the plaintext

• Min-entropy (“guessing entropy”)

H∞(X ) = − log2 max
x

p(X = x)

• Wegman-Carter authentication (“one-time signature”)
The signature does not increase Eve’s guessing probability
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These two kinds of entropy are the important ones for us

• Shannon entropy (“source-coding entropy”)

H(X ) = −
∑
x

p(X = x) log2 p(X = x)

• Vernam cipher (“one-time pad”)
The cryptogram leaks no information on the plaintext

• Min-entropy (“guessing entropy”)

H∞(X ) = − log2 max
x

p(X = x)

• Wegman-Carter authentication (“one-time signature”)
The signature does not increase Eve’s guessing probability



One-time pad

• Uses a particular set of encryption functions: symbol-by-symbol
shifts

• The family {Dk}, of functions Dk(c) = m, is such that

p
(
DK (c) = m

)
=

1

|M|



Wegman-Carter authentication

• Uses a particular set of signing functions: a Strongly Universal2
hash function family

• The family {Sk}, of functions Sk(m) = t, is such that

p
(
SK (mE) = tE

)
=

1

|T |

and
p
(
SK (mE) = tE

∣∣∣SK (m) = t
)
=

1

|T |

• This type of authentication is used in Quantum key distribution



Next lecture

• Stream ciphers

• Linear Feedback Shift Registers as a basis for stream ciphers

• How to break LFSR-based ciphers

• Random number generation


