Cryptography Lecture 2 Foundations and basic theory



#### What we will do this lecture

- the One Time Pad (OTP), the only unbreakable cipher
- Shannon's information theory, that proves this
- the central role of statistics in cryptography



Remember to register for the laboratory sessions in lisam



#### Methods to break a cipher

- In order to break a cipher you could
  - Try all possible keys (exhaustive search)
  - Use plaintext alphabet statistics
  - Use both single letter statistics, and digram, trigram, and word statistics
  - Do calculations adjusted to the algorithm



#### Methods to break a cipher

- In order to break a cipher you could
  - Try all possible keys (exhaustive search)
  - Use plaintext alphabet statistics
  - Use both single letter statistics, and digram, trigram, and word statistics
  - Do calculations adjusted to the algorithm
- Will these methods always work?
  - If yes, why? How can I be sure?
  - If no, will they work under specific conditions? Then what conditions?



# These are the main attack possibilities

| Ciphertext only   | Use properties of the plaintext such as statistics of the language                                                                                          |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Known plaintext   | Allows simple deduction of the key in some ciphers, but not in others                                                                                       |
| Chosen plaintext  | In some ciphers, there are weak mes-<br>sages that reveal the key. In other<br>cases, pairs of chosen plaintexts to-<br>gether reveal properties of the key |
| Chosen ciphertext | Adds the reverse transformation, say in some systems that let you test decryption of a number of encrypted texts                                            |



### Possible results

| Find the key                                       | Complete break, the final goal of cryptanalysis                                          |
|----------------------------------------------------|------------------------------------------------------------------------------------------|
| Finding more plaintext than you already have       | Sometimes a complete break<br>is not possible, but a partial<br>break can be very useful |
| Finding correct cryptograms<br>for some plaintexts | Important in authentication schemes                                                      |



#### Examples

- Finding the key of Caesar through exhaustive search
- Finding more plaintext letters in a Vigenère cipher, when the originally known plaintext is shorter than the key
- Recognition of common blocks in block ciphers
- Finding another message with the same RSA signature as a received message



#### Shannon

• Developed a theoretical measure of information, based on the receiver's initial uncertainty

$$H(x) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

- Used this to create measures and a theory for technical communication
- Based this on his wartime work on ciphers





### Probability theory

• Random variable: each value occurs with a probability

p(X = x)

• A collection of values (event) has a probability

$$p(A) = \sum_{x \in A} p(X = x)$$

• The average value (expectation) can be calculated as

$$E(X) = \sum_{x} x \, p(X = x)$$



### Probability theory

• Random variable: each value occurs with a probability

$$p(X = x)$$

• A collection of values (event) has a probability

$$p(A) = \sum_{x \in A} p(X = x)$$

The expectation value of a function can be calculated as

$$E(f(X)) = \sum_{x} f(x) p(X = x)$$



### Example: letter distribution



An even distribution would look like the above



# Example: letter distribution



- · An even distribution would look like the above
- But the single letter distribution of English is uneven



(single letter probability, in the middle of the cryptogram)

| Key | Plaintext | Probability | Key | Plaintext | Probability |
|-----|-----------|-------------|-----|-----------|-------------|
| Α   | HWJFX     | 0.053       | Ν   | U         | 0.025       |
| В   | G         | 0.020       | 0   | Т         | 0.105       |
| С   | F         | 0.029       | Р   | S         | 0.061       |
| D   | E         | 0.131       | Q   | R         | 0.068       |
| Е   | D         | 0.038       | R   | Q         | 0.001       |
| F   | С         | 0.028       | S   | Р         | 0.020       |
| G   | В         | 0.014       | Т   | 0         | 0.080       |
| Н   | А         | 0.082       | U   | N         | 0.071       |
| I   | Z         | 0.001       | V   | Μ         | 0.025       |
| J   | Y         | 0.020       | W   | L         | 0.034       |
| K   | Х         | 0.002       | Х   | К         | 0.004       |
| L   | W         | 0.015       | Y   | J         | 0.001       |
| Μ   | V         | 0.009       | Z   | I         | 0.063       |



(from single letter probabilities)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| А   | HWJFX     | 0.0008      |
| В   | GV        | 0.0002      |
| С   | FU        | 0.0007      |
| D   | ET        | 0.0138      |
| Е   | DS        | 0.0023      |
| F   | CR        | 0.0019      |
| G   | BQ        | <0.00005    |
| Н   | AP        | 0.0016      |
| I   | ZO        | 0.0001      |
| J   | YN        | 0.0014      |
| K   | XM        | 0.0001      |
| L   | WL        | 0.0005      |
| М   | VK        | <0.00005    |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        | < 0.00005   |
| 0   | TI        | 0.0066      |
| Р   | SH        | 0.0032      |
| Q   | RG        | 0.0014      |
| R   | QF        | < 0.00005   |
| S   | PE        | 0.0026      |
| Т   | OD        | 0.0030      |
| U   | NC        | 0.0020      |
| V   | MB        | 0.0004      |
| W   | LA        | 0.0028      |
| Х   | KZ        | < 0.00005   |
| Y   | JY        | < 0.00005   |
| Z   | IX        | 0.0001      |



(from single letter probabilities)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| A   | HWJFX     | 0.0008      |
| В   | GV        | 0.0002      |
| С   | FU        | 0.0007      |
| D   | ET        | 0.0138      |
| E   | DS        | 0.0023      |
| F   | CR        | 0.0019      |
| G   | BQ        | <0.00005    |
| Н   | AP        | 0.0016      |
| I   | ZO        | 0.0001      |
| J   | YN        | 0.0014      |
| K   | XM        | 0.0001      |
| L   | WL        | 0.0005      |
| М   | VK        | <0.00005    |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        | < 0.00005   |
| 0   | TI        | 0.0066      |
| Р   | SH        | 0.0032      |
| Q   | RG        | 0.0014      |
| R   | QF        | < 0.00005   |
| S   | PE        | 0.0026      |
| Т   | OD        | 0.0030      |
| U   | NC        | 0.0020      |
| V   | MB        | 0.0004      |
| W   | LA        | 0.0028      |
| Х   | KZ        | < 0.00005   |
| Y   | JY        | < 0.00005   |
| Z   | IX        | 0.0001      |



Digram distribution is not a product of two single-letter distributions

• In English text,

$$p(X = T, Y = H) > p(X = T)p(Y = H)$$

• In fact,

$$p(X = T)p(Y = H) = 0.105 \cdot 0.053 = 0.0056$$

while

$$p(X = T, Y = H) = 0.0244$$

• Two random variables are said to be independent if

$$p(X = x, Y = y) = p(X = x)p(Y = y)$$



(from single letter probabilities)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| A   | HWJFX     | 0.0008      |
| В   | GV        | 0.0002      |
| С   | FU        | 0.0007      |
| D   | ET        | 0.0138      |
| E   | DS        | 0.0023      |
| F   | CR        | 0.0019      |
| G   | BQ        | <0.00005    |
| Н   | AP        | 0.0016      |
| I   | ZO        | 0.0001      |
| J   | YN        | 0.0014      |
| K   | XM        | 0.0001      |
| L   | WL        | 0.0005      |
| М   | VK        | <0.00005    |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        | < 0.00005   |
| 0   | TI        | 0.0066      |
| Р   | SH        | 0.0032      |
| Q   | RG        | 0.0014      |
| R   | QF        | <0.00005    |
| S   | PE        | 0.0026      |
| Т   | OD        | 0.0030      |
| U   | NC        | 0.0020      |
| V   | MB        | 0.0004      |
| W   | LA        | 0.0028      |
| Х   | KZ        | < 0.00005   |
| Y   | JY        | < 0.00005   |
| Z   | IX        | 0.0001      |



(Digram probabilities)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| A   | HWJFX     | 0.0004      |
| В   | GV        | <0.00005    |
| С   | FU        | 0.0013      |
| D   | ET        | 0.0059      |
| E   | DS        | 0.0021      |
| F   | CR        | 0.0025      |
| G   | BQ        | <0.00005    |
| Н   | AP        | 0.0034      |
| 1   | ZO        | <0.00005    |
| J   | YN        | <0.00005    |
| K   | XM        | <0.00005    |
| L   | WL        | <0.00005    |
| М   | VK        | <0.00005    |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        | < 0.00005   |
| 0   | TI        | 0.0189      |
| Р   | SH        | 0.0059      |
| Q   | RG        | 0.0008      |
| R   | QF        | < 0.00005   |
| S   | PE        | 0.0055      |
| Т   | OD        | 0.0025      |
| U   | NC        | 0.0080      |
| V   | MB        | < 0.00005   |
| W   | LA        | 0.0088      |
| Х   | KZ        | < 0.00005   |
| Y   | JY        | < 0.00005   |
| Ζ   | IX        | 0.0008      |



Probability theory: several random variables

· Random variables: each pair of values occurs with a probability

$$p(X = x, Y = y)$$

• Single-value probabilities can be calculated using

$$p(Y = y) = \sum_{x} p(X = x, Y = y)$$

• The conditional probability can be calculated as

$$p(Y = y | X = x) = \frac{p(X = x, Y = y)}{p(X = x)}$$



Probability theory: several random variables, example

· Random variables: each pair of values occurs with a probability

$$p(X = T, Y = H) = 0.0244$$

• Single-value probabilities can be calculated using

$$p(Y = H) = \sum_{x \in alphabet} p(X = x, Y = H)$$

• The conditional probability can be calculated as

$$p(Y = H|X = T) = \frac{p(X = T, Y = H)}{p(X = T)} = \frac{0.0244}{0.105} = 0.232,$$

compare with

$$p(Y = H) = 0.053$$



(Digram probabilities)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| A   | HWJFX     | 0.0004      |
| В   | GV        | <0.00005    |
| С   | FU        | 0.0013      |
| D   | ET        | 0.0059      |
| E   | DS        | 0.0021      |
| F   | CR        | 0.0025      |
| G   | BQ        | <0.00005    |
| Н   | AP        | 0.0034      |
| 1   | ZO        | <0.00005    |
| J   | YN        | <0.00005    |
| K   | XM        | <0.00005    |
| L   | WL        | <0.00005    |
| М   | VK        | <0.00005    |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        | < 0.00005   |
| 0   | TI        | 0.0189      |
| Р   | SH        | 0.0059      |
| Q   | RG        | 0.0008      |
| R   | QF        | < 0.00005   |
| S   | PE        | 0.0055      |
| Т   | OD        | 0.0025      |
| U   | NC        | 0.0080      |
| V   | MB        | < 0.00005   |
| W   | LA        | 0.0088      |
| Х   | KZ        | < 0.00005   |
| Y   | JY        | < 0.00005   |
| Ζ   | IX        | 0.0008      |



(Digram probabilities, conditioned on the possible combinations)

| Key | Plaintext | Probability | Key | Plaintext | Probability |
|-----|-----------|-------------|-----|-----------|-------------|
| Α   | HWJFX     | 0.0063      | Ν   | UJ        | <0.00005    |
| В   | GV        | <0.00005    | 0   | TI        | 0.2830      |
| С   | FU        | 0.0189      | Р   | SH        | 0.0881      |
| D   | ET        | 0.0881      | Q   | RG        | 0.0126      |
| E   | DS        | 0.0314      | R   | QF        | <0.00005    |
| F   | CR        | 0.0377      | S   | PE        | 0.0818      |
| G   | BQ        | <0.00005    | Т   | OD        | 0.0377      |
| Н   | AP        | 0.0503      | U   | NC        | 0.1195      |
| I   | ZO        | <0.00005    | V   | MB        | <0.00005    |
| J   | YN        | <0.00005    | W   | LA        | 0.1321      |
| K   | XM        | <0.00005    | Х   | KZ        | < 0.00005   |
| L   | WL        | <0.00005    | Y   | JY        | <0.00005    |
| Μ   | VK        | <0.00005    | Z   | IX        | 0.0126      |



(Digram probabilities, conditioned on the possible combinations)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| А   | HWJFX     | 0.0063      |
| В   | GV        | <0.00005    |
| С   | FU        | 0.0189      |
| D   | ET        | 0.0881      |
| Е   | DS        | 0.0314      |
| F   | CR        | 0.0377      |
| G   | BQ        | <0.00005    |
| Н   | AP        | 0.0503      |
| I   | ZO        | <0.00005    |
| J   | YN        | <0.00005    |
| K   | XM        | <0.00005    |
| L   | WL        | <0.00005    |
| Μ   | VK        | <0.00005    |

| Key      | Plaintext | Probability   |
|----------|-----------|---------------|
| Ν        | UJ        | < 0.00005     |
| 0        | TI        | 0.2830        |
|          | p(1       | (II) = 0.0189 |
| )(TI   H | WorGVor.  | (.) = 0.2830  |
| к        | QF        | <0.00005      |
| S        | PE        | 0.0818        |
| Т        | OD        | 0.0377        |
| U        | NC        | 0.1195        |
| V        | MB        | <0.00005      |
| W        | LA        | 0.1321        |
| Х        | KZ        | <0.00005      |
| Y        | JY        | <0.00005      |
| Z        | IX        | 0.0126        |



(conditioning on trigrams)

| Key | Plaintext | Probability |  |
|-----|-----------|-------------|--|
| Α   | HWJFX     | < 0.00005   |  |
| В   | GV        |             |  |
| С   | FUH       | <0.00005    |  |
| D   | ETG       | <0.00005    |  |
| Е   | DSF       | <0.00005    |  |
| F   | CRE       | 0.1111      |  |
| G   | BQ        |             |  |
| Н   | APC       | <0.00005    |  |
| I   | ZO        |             |  |
| J   | YN        |             |  |
| K   | XM        |             |  |
| L   | WL        |             |  |
| М   | VK        |             |  |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        |             |
| 0   | TIV       | 0.1667      |
| Р   | SHU       | 0.0056      |
| Q   | RGT       | < 0.00005   |
| R   | QF        |             |
| S   | PER       | 0.4389      |
| Т   | ODQ       | < 0.00005   |
| U   | NCP       | < 0.00005   |
| V   | MB        |             |
| W   | LAN       | 0.2500      |
| Х   | KZ        |             |
| Y   | JY        |             |
| Z   | IXK       | < 0.00005   |



(conditioning on 4-grams)

| Key | Plaintext | Probability |  |
|-----|-----------|-------------|--|
| А   | HWJFX     |             |  |
| В   | GV        |             |  |
| С   | FUH       |             |  |
| D   | ETG       |             |  |
| Е   | DSF       |             |  |
| F   | CREA      | 0.3673      |  |
| G   | BQ        |             |  |
| Н   | APC       |             |  |
| I   | ZO        |             |  |
| J   | YN        |             |  |
| K   | XM        |             |  |
| L   | WL        |             |  |
| М   | VK        |             |  |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        |             |
| 0   | TIVR      | <0.00005    |
| Р   | SHUQ      | <0.00005    |
| Q   | RGT       |             |
| R   | QF        |             |
| S   | PERN      | 0.6327      |
| Т   | ODQ       |             |
| U   | NCP       |             |
| V   | MB        |             |
| W   | LANJ      | <0.00005    |
| X   | KZ        |             |
| Y   | JY        |             |
| Z   | IXK       |             |



#### (conditioning on 5-grams)

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| А   | HWJFX     |             |
| В   | GV        |             |
| С   | FUH       |             |
| D   | ETG       |             |
| Е   | DSF       |             |
| F   | CREAS     | ≈1          |
| G   | BQ        |             |
| Н   | APC       |             |
| I   | ZO        |             |
| J   | YN        |             |
| K   | XM        |             |
| L   | WL        |             |
| М   | VK        |             |

| Key | Plaintext | Probability |
|-----|-----------|-------------|
| Ν   | UJ        |             |
| 0   | TIVR      |             |
| Р   | SHUQ      |             |
| Q   | RGT       |             |
| R   | QF        |             |
| S   | PERNF     | ≈0          |
| Т   | ODQ       |             |
| U   | NCP       |             |
| V   | MB        |             |
| W   | LANJ      |             |
| Х   | KZ        |             |
| Y   | JY        |             |
| Z   | IXK       |             |



# Why is a five-letter cryptogram enough?

- Initially, the key can be any of the 26 possible values
- You need roughly 5 bits of information ( $2^5 = 32$ , so actually 4.75 bits) to determine the key value, and each cryptogram letter gives you some information
- Depending on the cleartext, the information you receive is different. The plaintext distribution gives the *average* information gain.
- This is measured using the notion of *Shannon entropy*. English text has an entropy of close to one bit per letter



- If there is only one alternative, no new information is gained by seeing the next letter
- If there are several possible alternatives, the gained information is the number of bits you need to identify one alternative
- With even distribution, just under five bits ( $\log_2 26 < \log_2 32 = 5$ )





- If there is only one alternative, no new information is gained by seeing the next letter
- If there are several possible alternatives, the gained information is the number of bits you need to identify one alternative
- With even distribution, just under five bits ( $\log_2 26 < \log_2 32 = 5$ , or  $-\log_2 p = -\log_2(1/26)$ )





- If some alternatives are more probable than others, you can gain bits used by using a shorter code for the more probable cases (a Huffman code)
- The tree is arranged so that nodes on a given level have the same probability
- This means that the probability halves for each level

OINSRH

WGPBV

(J(Z(X(Q



 You use three bits to encode E, and this happens with DLUCMFY probability 1/8 = 2<sup>-3</sup>

E

- You use 9 bits to encode Q, and this happens with probability  $1/512 = 2^{-9}$
- The information that is needed to identify each letter is logarithmic in the probability of the alternatives

PBV



• The number of bits that you need to encode the letter R is (approximately)

 $-\log_2 p(X = \mathbb{R})$ 

• The average is therefore

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

- This quantifies the average information needed to encode one symbol in the stream
- Or, equivalently, the average information gained by the recipient, for each symbol in the stream



Shannon entropy  $\approx$  "Expected surprise"





Shannon entropy: several random variables

• The joint entropy is

$$H(X, Y) = -\sum_{x} \sum_{y} p(X = x, Y = y) \log_2 p(X = x, Y = y)$$

• The conditional entropy is

$$H(Y|X) = \sum_{x} p(X = x)H(Y|X = x)$$
  
=  $-\sum_{x} p(X = x) \left( \sum_{y} p(Y = y|X = x) \log_2 p(Y = y|X = x) \right)$   
=  $-\sum_{x} \sum_{y} p(X = x, Y = y) \log_2 p(Y = y|X = x)$ 

Note that the conditional entropy

$$H(Y|X) \neq -\sum_{x}\sum_{y} p(Y=y|X=x) \log_2 p(Y=y|X=x)$$



Shannon entropy: several random variables

#### Theorem (Chain rule):

$$H(X,Y) = H(X) + H(Y|X)$$

#### Theorem:

- 1.  $H(X) \le \log_2 |\{\text{possible values of } X\}|$ , with equality only if X is uniformly distributed
- 2.  $H(X, Y) \le H(X) + H(Y)$ , with equality only if X and Y are independent
- 3.  $H(Y|X) \le H(Y)$ , with equality only if X gives no information on Y



Defining properties of the Shannon entropy

Shannon put forward the following requirements on his proposed measure of uncertainty (or information gain):

- 1. The number H(X) should not depend on the possible values of X, but only on the distribution
- 2. Small changes in the probabilities should give small changes in H(X) (continuity)
- 3. If X and Y are both uniformly distributed, but there are more possible values for Y, then H(X) < H(Y)
- 4. If Z has the same distribution as X, except that two outcomes (x<sub>i</sub> and x<sub>j</sub>, say) have been joined into one in Z, then H(X) = H(Z) + p(X = x<sub>i</sub> or x<sub>j</sub>)H(X|X = x<sub>i</sub> or x<sub>j</sub>)

Theorem (Shannon, 1948): The only function that obeys these four is

$$H(X) = -\sum_{x} p(X = x) \log_{b} p(X = x)$$



#### Shannon entropy and Huffman codes





# The entropy of English

- A uniformly distributed random letter would have entropy  $\log_2 26 = 4.7$
- With a single letter *X*<sub>1</sub> and the immediately following letters *X*<sub>2</sub>, *X*<sub>3</sub>, ..., from English text

 $H(X_1) = 4.18$  $H(X_2|X_1) = 3.56$  $H(X_3|X_2, X_1) = 3.3$ 

• The average entropy of the whole trigram is

$$\frac{H(X_1, X_2, X_3)}{3} = \frac{H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1)}{3} = 3.68$$

The average entropy over long sequences of English text

$$\lim_{n\to\infty}\frac{H(X_1,\ldots,X_n)}{n}\approx 1.5$$



# The redundancy of English

- A uniformly distributed random letter would have entropy  $\log_2 26 = 4.7$
- The average entropy over long sequences of English text

$$\lim_{n\to\infty}\frac{H(X_1,\ldots,X_n)}{n}\approx 1.5$$

• Therefore, roughly two bits out of three are not needed. The redundancy R of English written text is  $\sim$ 68%



### Formal Shannon model

- A cipher is a set of invertible functions *E<sub>k</sub>* plaintexts *m* ∈ *M* to cryptograms *c* ∈ *C*
- For each *E<sub>k</sub>* there is a corresponding decrypting function *D<sub>k</sub>* such that *D<sub>k</sub>*(*E<sub>k</sub>*(*m*)) = *m* for all *m*
- The value  $k \in \mathcal{K}$  deciding the choice of a specific  $E_k$  is the key





# Formal Shannon model



- To Eve, the plaintext is a random variable *M*, the key is a random variable *K*, and the cryptogram is a random variable *C*
- The ciphertext *C* (and knowledge about *E<sub>K</sub>*) gives you knowledge about *M*, measured by *H*(*M*|*C*)
- A known-plaintext attack is intended to give you K, and this can be measured by H(K|M, C)



### Unicity distance

- The *unicity distance* is a measure of the length of ciphertext at which there is only one possible plaintext
- A rough estimate is ( $\mathcal{K} =$ set of keys,  $\mathcal{L} =$ set of letters)

$$m_0 = rac{\log_2 |\mathcal{K}|}{R \log_2 |\mathcal{L}|}$$

- If the redundancy is 0 (all messages are equally possible), the distance can be infinite, in which case even exhaustive search will not help
- Even with a finite unicity distance, it can be very complicated to find the key



### The One Time Pad is the only theoretically secure cipher

- Created by Vernam and Mauborgne (OTP), 1918
- Do Vigenère with a randomly chosen key as long as the message
- A cryptosystem has *perfect secrecy* if H(M|C) = H(M)

Theorem: The one time pad has perfect secrecy Proof: see the course book



### Why the OTP is secure

- Suppose you have a cryptogram and the complete statistics for every possible plaintext of the same length.
- For each possible plaintext there is a corresponding key encrypting that plaintext into the given cryptogram.
- Every key is exactly as likely as another; thus you have no clue to which plaintext is the more likely one, except what you already knew before getting the cryptogram.



# How (not) to use OTP

- Never, ever reuse a key!
- If the key sequence is not truly random, it is NOT OTP.
- You must generate a truly random key sequence equally long as the message, and then find a secure channel for transportation of that key to the intended message recipient...





# How (not) to use OTP

- In 1945, Soviets used the same OTP twice for two different communication lines. Even though one was first encrypted via a code book, the presence of known British government documents (known plaintext) allowed breaking the OTP system.
- Some Soviet spies used OTP with pads generated by typists using actual typewriters. This is generally a bad idea because people are not good at generating random sequences.





Shannon entropy is not suitable for all purposes



- Alice creates a *signature*, the "tag"  $t \in \mathcal{T}$  of the message
- · Bob verifies that the tag has been generated using the correct key
- Eve does not want to decode Alice's tag, but uses it to generate a tag for her own message that goes through Bob's verification



For signatures, the "guessing entropy" is a better measure



- The tag gives Eve information about *K*'s distribution, and she uses it to generate a tag for her own message
- She doesn't gain enough information to calculate the tag, she must guess the tag value



For signatures, the "guessing entropy" is a better measure



- The tag gives Eve information about K's distribution, and she uses it to generate a tag for her own message
- She doesn't gain enough information to calculate the tag, she must guess the tag value
- She uses the most probable value for her guess



For signatures, the "guessing entropy" is a better measure



- The tag gives Eve information about *K*'s distribution, and she uses it to generate a tag for her own message
- She doesn't gain enough information to calculate the tag, she must guess the tag value
- The appropriate measure is the "guessing entropy" (or min-entropy)

$$H_{\infty}(X) = -\log_2 \max_{x} p(X = x) = \min_{x} \left( -\log_2 p(X = x) \right)$$



These two kinds of entropy are the important ones for us

• Shannon entropy ("source-coding entropy")

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

• Min-entropy ("guessing entropy")

$$H_{\infty}(X) = -\log_2 \max_{x} p(X = x)$$



These two kinds of entropy are the important ones for us

• Shannon entropy ("source-coding entropy")

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

- Vernam cipher ("one-time pad") The cryptogram leaks no information on the plaintext
- Min-entropy ("guessing entropy")

$$H_{\infty}(X) = -\log_2 \max_{x} p(X = x)$$



These two kinds of entropy are the important ones for us

• Shannon entropy ("source-coding entropy")

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

- Vernam cipher ("one-time pad") The cryptogram leaks no information on the plaintext
- Min-entropy ("guessing entropy")

$$H_{\infty}(X) = -\log_2 \max_{x} p(X = x)$$

• Wegman-Carter authentication ("one-time signature") The signature does not increase Eve's guessing probability



#### One-time pad

- Uses a particular set of encryption functions: symbol-by-symbol shifts
- The family  $\{D_k\}$ , of functions  $D_k(c) = m$ , is such that

$$p(D_{K}(c) = m) = \frac{1}{|\mathcal{M}|}$$



#### Wegman-Carter authentication

- Uses a particular set of signing functions: a Strongly Universal<sub>2</sub> hash function family
- The family  $\{S_k\}$ , of functions  $S_k(m) = t$ , is such that

$$p(S_{\mathcal{K}}(m_{\mathsf{E}})=t_{\mathsf{E}})=rac{1}{|\mathcal{T}|}$$

and

$$p\left(S_{\mathcal{K}}(m_{\mathsf{E}})=t_{\mathsf{E}}\Big|S_{\mathcal{K}}(m)=t\right)=rac{1}{|\mathcal{T}|}$$

This type of authentication is used in Quantum key distribution



#### Next lecture

- Stream ciphers
- Linear Feedback Shift Registers as a basis for stream ciphers
- How to break LFSR-based ciphers
- Random number generation

