Cryptography Lecture 9
Key distribution and trust, Elliptic curve cryptography

LINKOPING
II.“ UNIVERSITY

Key Management

® The first key in a new connection or
association is always delivered via a
courier

® Once you have a key, you can use
that to send new keys

o |f Alice shares a key with Trent and
Trent shares a key with Bob, then
Alice and Bob can exchange a key
via Trent (provided they both trust
Trent)

LINKOPING
II.“ UNIVERSITY

Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT

LINKOPING
II." UNIVERSITY

Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
)
&
\\O

LINKOPING
II." UNIVERSITY

Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT

LINKOPING
II." UNIVERSITY

Key distribution center, key server

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can receive a key from Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
<
&
o

LINKOPING
II." UNIVERSITY

Key distribution center, key server

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can receive a key from Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT

[Aice, 16|

LINKOPING
II." UNIVERSITY

Key distribution center, Blom key pre-distribution

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
and Alice and Bob each have a public id ra, rg, they can recieve
key-generation info from Trent (provided they both trust Trent)

Trent
Key distribution center
KAT, KBT: a, b, C
ay=a-+ bry, by =b+ cry

e o e

LINKOPING
II." UNIVERSITY

Key distribution center, Station-To-Station (STS) protocol

¢ What about Diffie-Hellman key exchange?

Trent
Key distribution center
Kar, KT

a® mod p

[Aice Farf—_{Bob Kar]

aP mod p

LINKOPING
II." UNIVERSITY

Key distribution center, Station-To-Station (STS) protocol

¢ What about Diffie-Hellman key exchange?

e Eve can do an “intruder-in-the-middle”

Trent
Key distribution center
Kat, Ket
a? mod p af mod p
[Aice, Kar e Evel—_{Bob, K]
a® mod p ab mod p

LINKOPING
II." UNIVERSITY

Key distribution center, Station-To-Station (STS) protocol

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KT

«? mod p

(Aice, Kor | [Bob K]

aP mod p

LINKOPING
II." UNIVERSITY

Key distribution center, Station-To-Station (STS) protocol

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KgT

«? mod p

aP mod p
Alice, Ko I Bob, Kgt

EKAB (ngA(Oéa, ab))

Ek ;5 (siga(a?, ab))

LINKOPING
II." UNIVERSITY

Key distribution center, Station-To-Station (STS) protocol

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KgT

EKAB (ngA(Oéa, ab))

Ek ;5 (siga(a?, ab))

LINKOPING
II." UNIVERSITY

Key distribution center, Station-To-Station (STS) protocol

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KgT

Alice, Kar —_ I Bob, Kgt

EKAB (sigA(oza, ab))

Ek ;5 (siga(a?, ab))

LINKOPING
II." UNIVERSITY

Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT

LINKOPING
II." UNIVERSITY

Key distribution center, replay attacks

e But perhaps Eve has broken a previously used key, and intercepts
Alice’s request

Trent
Key distribution center
Kar, KpT

LINKOPING
II." UNIVERSITY

Key distribution center, replay attacks

e But perhaps Eve has broken a previously used key, and intercepts
Alice’s request

® Then she can fool Bob into communicating with her

Trent
Key distribution center
Kar, KT

LINKOPING
II." UNIVERSITY

Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

Trent
Key distribution center
B Kar, KT

LINKOPING
II.“ UNIVERSITY

Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

Trent
Key distribution center

LINKOPING
II." UNIVERSITY

Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

® But now, Eve can pretend to be Bob and make a request to Trent

Trent
Key distribution center

LINKOPING
II." UNIVERSITY

Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

¢ But now, Eve can pretend to be Bob and make a request to Trent,
who will forward the key to Alice

Trent
Key distribution center
B Kar KeT o S

Alice, K

LINKOPING
II." UNIVERSITY

Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, KT
o
o
N
]

LINKOPING
II." UNIVERSITY

Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kat, KeT
\\(\
\\\Oq’ 2: Ex,; (Ks||IDgl|r1]|Exkgy (Ks||IDa))
\Q?

LINKOPING
II." UNIVERSITY

Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, KsT
\\(\
\\\Oq’ 2: Ex,; (Ks||IDgl|r1]|Exkgy (Ks||IDa))
) 3: Exgy (Ks||IDa)

/\
Bob, KT

Alice, Kat

LINKOPING
II." UNIVERSITY

Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, Ket
\\(\
\\\Oq’ 2: Ex, (Ks||IDglIr|Ekgr (Ks|IDa))
v.
D 3: Exgy (Ks]|IDa)

Alice, Kat | Bob, Kg1

LINKOPING
II." UNIVERSITY

Key distribution center, Needham-Schroeder key agreement

¢ Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, KsT

2: Ex,; (Ks||IDglIrl|Ekgy (Ksl|IDa))

3: Exgr (Ksl||IDa)

s BT

yl
A)

LINKOPING
II." UNIVERSITY

Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

¢ |f Eve ever breaks one session key, she can get Bob to reuse it

Trent
Key distribution center
Kar, KT

1: EKBT(KSHIDA)

. ,ms_(m)\ Bob, K,
e or) (B oo]

LINKOPING
II." UNIVERSITY

Kerberos

Trent
Kc, Kg

LINKOPING
II.“ UNIVERSITY

Grant

Serge

A client, Cliff
An authentication server, Trent
An authorization server, Grant

A service server, Serge

Kerberos

Trent
Kc, Kg

LINKOPING
II.“ UNIVERSITY

Cliff
Kc

Grant
Ke, Ks

Serge

A client, Cliff
An authentication server, Trent
An authorization server, Grant

A service server, Serge

They share keys K¢, Kg, Ks

Kerberos

Trent
Kc, Kg

LINKOPING
II.“ UNIVERSITY

Grant
Kg, Ks

Cliff
Kc

Serge

1. Cliff sends Trent ID¢||/D¢

Kerberos

Trent
Kc, Kg

LINKOPING
II.“ UNIVERSITY

Grant
Kg, Ks

Cliff
Kc

Serge

1. Cliff sends Trent ID¢||/D¢

2. Trent responds width Ex (Kcg)|| TGT
where TGT = /D(;||EKG(/Dc||t1||ch)

Kerberos

Trent

Ke. Kg

LINKOPING
II.“ UNIVERSITY

Grant
Ke, Ks

Cliff
Kc

Serge

1. Cliff sends Trent ID¢||/D¢

2. Trent responds width Ex (Kcg)|| TGT
where TGT = IDGHEKG(IDC”tlHKGC)

3. Cliff sends Grant Ex.(IDc||t2)|| TGT

Kerberos

Trent
Kc, Kg

Grant
Ke, Ks

\W/4

Cliff
Kc

Serge

LINKOPING
II." UNIVERSITY

—

Cliff sends Trent ID¢||/D¢

Trent responds width Ex.(Kcg)|| TGT
where TGT = IDGHEKG(IDC”tlHKGC)

3. Cliff sends Grant Ex.(IDc||t2)|| TGT

Grant responds with Ex..(Kcs)||ST
where ST = EKS(IDC||t3||texpir.||KCS)

Kerberos

Trent
Ke. Kg

LINKOPING
II." UNIVERSITY

\W/4

Grant
Ke, Ks

Cliff
Kc

h 4

Serge

—

Cliff sends Trent ID¢||/D¢

Trent responds width Ex.(Kcg)|| TGT
where TGT = /Dg||EKG(/Dc||t1||Kgc)

3. Cliff sends Grant Ex.(IDc||t2)|| TGT

Grant responds with Ex..(Kcs)||ST
where ST = EKS(IDC||t3||texpir.||KCS)

Cliff sends Serge Ex . (IDc||t2)||ST and
can then use Serge’s services

Public key distribution

¢ Public key distribution uses a Public Key Infrastructure (PKI)

Certification Authority
ST, {e,-}

LINKOPING
II.“ UNIVERSITY

Public key distribution, using Certification Authorities

¢ Public key distribution uses a Public Key Infrastructure (PKI)

¢ Alice sends a request to a Certification Authority (CA) who
responds with a certificate, ensuring that Alice uses the correct
key to communicate with Bob

Certification Authority
Sint {e,-}

LINKOPING
II." UNIVERSITY

Public key distribution, using X.509 certificates

¢ The CAs often are commercial companies, that are assumed to be
trustworthy

¢ Many arrange to have the root certificate packaged with IE,
Mozilla, Opera,. ..

* They issue certificates for a fee

® They often use Registration Authorities (RA) as sub-CA for
efficiency reasons

LINKOPING
II." UNIVERSITY

Public key distribution, X.509 certificates in your browser

@ Jan-Ake Larsson - Mozilla Firefox
e Edit View History Bookmarks Tools Help

- A6 Teyliuselalan ——
i Most Visitedv [6)Release Notes [EFedora Projectv [Red Hatv [EJFree Contentv 4 Logga in pa Kurspla...

Jan-Ake Larsson L

Firefox Preferences o x
= < <

T -

General Tabs Content Applications Privacy Security | ./

General | Network | Update | Encryption

Protocols
Use SSL 3.0

6 1 Gversice | andra sokmigheter

,L Linkpings universitet

Samhille Press Anstilld

Certificate Manager

INSTITUTIONEN FOR

Your Certificates | People | Servers | Authorities | Others |
When a server req|

B ISYs huvudsida

O select one auto{ | You have certificates on file that identify these certificate authorities:
INFORMATIONSKODNI!
()

Certificate Name Security Device "= 1=
B ICGs huvudsid View Certificats DigiCert Global Root CA Builtin Object Token -
- DigiCert High Assurance EV CA-1 Software Security Device
EANAKEILARESON] DigiCert High Assurance CA-3 Software Security Device
B Huvudsida DigiNota I
PTTr—— DigiNotar Root CA Builtin Object Token
R < Digital Signature Trust
= Grunduibidning DST ACES CA X6 Builtin Object Token
e] < Digital Signature Trust Co. i i
- Digital Signature Trust Co. Global CA 1 Builtin Object Token
B Vart kvantkryptografisystem, Digital Signature Trust Co. Global CA 3 Builtin Object Token
B Forskning om Kassiska DST Root CA X3 Builtin Object Token
delsystem (GENIT) | | |vDisigas. ~]
B Kvantkrypto knéckt och lagal View... Edit... Import... Export... Delete..
(ran 2008y Help J { J [mpore..] [export... | |
= FAQom
B Pressarkiv, Kvantkrypto B Aysajan Abid

Done

II LINKOPING
o UNIVERSITY

Public key distribution, using web of trust

* No central CA

e Users sign each other’s public key
(hashes)

® This creates a “web of trust”

LINKOPING
II." UNIVERSITY

Public key distribution, using web of trust (PGP and GPG)

* No central CA

e Users sign each other’s public key
(hashes)

® This creates a “web of trust”

e Each user keeps a keyring with
the keys (s)he has signed

¢ The secret key is stored on a
secret keyring, on h{er,is}
computer

* The public key(s) and their
signatures are uploaded to key
servers

LINKOPING
II." UNIVERSITY

Public key distribution, a web-of-trust path

135EA668

Richard Stallman (Chief GNUisance)

<rms@gnu.org>

6BFDS49F 2BSS 607559E6 scoec || [pa) CAETEETE ABE6D 9ED101EF 44|jsB
Martin Michlmayr |Karl ||Benjamin Hill ||Joach | |[Be Peter Palfrader | K8°1R Michael Banck| |al|He
<tbmacyrius.com> ||sgey | smakoeatdot.cc || <jose || ||<b <geys <mbanckedsbia | |l<allsn
Y, ¢
00DECD || CD1548 | E10FS02 | BABSE2Z ||8174 (202 ||EDBF |8 | [|50 {co | 82sEE BF3BELDD F5C752 | |[FAF24 |D
Alexan ||Alexan |Marcus |Marcus |Toll||Car|Marc |8 ||| |Pa|Da|Matti| | Ralle Svensson |Russel | ||2ndre |T
<alexa ||<alexa | <protag | <marcus ||<tfh ||<en ||<mut |<|| | |<p <m | <masw | | <kallealysator. | <russe | | <andr |<
=7 s,
o I
°® . 'O’ i ‘\
EBCB0C34 239F7 ||9F ||33|| Fasnoasa ||7a||B0||43||asces ||BD92F | |cBIEE
Jorgen Cederlof Leif |[|Jo||Ka||[Marcus Gusta||To||Pe||Ri||Rent ||alber ||Par a
<joglysator.liu.se> <leif ||<j||<c||<gaspodealys||<t | [<p||<e||<kent ||<albe||<para
30FDD7LA

Jan-ake Larsson
<jalaremai.liu.se>

UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

¢ This is a client-server handshake procedure to establish key

® The server (but not the client) is authenticated (by its certificate)

LINKOPING
II." UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ClientHello

LINKOPING
II.“ UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientHello

ServerHello,. ..

LINKOPING
II." UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

ClientHello

ServerHello,. ..

ClientKeyExchange

II LINKOPING
o UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with the
PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for the
two directions of communication

ClientHello

ServerHello,. ..

ClientKeyExchange

II LINKOPING
o UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with the
PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for the
two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for the
previous handshake messages

ClientHello

ServerHello,. ..

= ClientKeyExchange >

II LINKOPING
o UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello

ServerHello,. ..

- ClientKeyExchange g

e SSL 1.0 (no public release), 2.0 (1995), 3.0 (1996), originally by
Netscape

e TLS 1.0 (1999), changes that improve security, among other things
how random numbers are chosen
+ Sensitive to CBC vulnerability discovered 2002,
demonstrated by BEAST attack 2011
» Current problem: TLS 1.0 is fallback if either end does not
support higher versions

LINKOPING
II." UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello

ServerHello,...
.- ClientKeyExchange

TLS 1.1 (2006), added protection against CBC attacks by explicit
IV specification

TLS 1.2 (2008), e.g., change MD5-SHA1 to SHA256
Never fall back to SSL 2.0 (2011)
TLS 1.3 (August 2018), many improvements

LINKOPING
II." UNIVERSITY

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello, ClientKey

ServerHello,. ..

e TLS 1.3 (August 2018), many improvements

- CBC is gone, beacuse of BEAST

- Static-RSA-key exchange is removed (!), no forward secrecy

- MDS5 (1), RC4, SHA1 and so-called “Export” algorithms
removed

- More efficient session startup, less TCP packets

LINKOPING
II." UNIVERSITY

Forward secrecy

¢ Forward secrecy: Even if the key-distribution cipher is broken, only
the current and possibly future sessions are broken, not the
previous sessions

¢ RSA as key transport does not give forward secrecy, while RSA as
signing algorithm may give forward secrecy

e STS (DH) gives forward secrecy if new secrets a and b are used
for each session (so-called “Ephemeral DH”, but beware of reusing
the prime p)

® This property does not only depend on the cipher suite used, but
on the details of how it is used

LINKOPING
II." UNIVERSITY

Key length and the use of Elliptic Curves

Table 7.2: Key-size Equivalence.
Security (bits)| RSA DLOG EC
field size|subfield

48 480 480] 96 96
56| 640 640| 112 |112
64| 816 816/ 128 |128
80| 1248 1248/ 160 [160
112| 2432 2432 224 (224
128| 3248 3248 256|256
160] 5312 5312 320 (320
192| 7936 7936] 384 |384
256(15424| 15424 512 |512

Table 7.3: Effective Key-size of Commonly used RSA/DLOG Keys.

RSA/DLOG Key|Security (bits)
512 50

768 62

1024 73

1536 89

2048 103

From “ECRYPT Il Yearly Report on Algorithms and Keysizes (2011-2012)”

LINKOPING

o UNIVERSITY

Elliptic curves

¢ An elliptic curve is the set of solutions to the equation
v =x3+ax®+bx+c

® These solutions are not ellipses, the name elliptic is used for
historical reasons and has do to with the integrals used when
calculating arc length in ellipses:

/b dx
2 Vx3+ax2+bx+c

LINKOPING
II.“ UNIVERSITY

Elliptic curves

® An elliptic curve is the set
E={(x.y):y*=x>+ax* + bx +c}
e Examples:

Y x3 — x { x3—x+1

DN :

LINKOPING
II.“ UNIVERSITY

Elliptic curves

¢ Most of the time a “depressed” cubic is enough
E={(xy):y>=x>+bx+c}

e Examples:

x> — X A xX3—x+1

DN :

LINKOPING
II.“ UNIVERSITY

Elliptic curves

* You do not want “singular curves” with double or triple roots
E={(xy):y>=x>+bx+c}

e Examples:

{X3+X2—X—1 A xX3—x+1

LINKOPING
II.“ UNIVERSITY

Elliptic curves

® An elliptic curve is the set

E={(xy):y*=x>+bx+c}

® Previously we have used
integers (mod p) and
multiplication

LINKOPING
II.“ UNIVERSITY

Elliptic curves

® An elliptic curve is the set

E={(xy):y*=x>+bx+c}

® Previously we have used the
multiplicative group of
integers mod p

¢ We need a group operation
on points of E, we'll call it
“addition”

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

¢ Given two elements in the group, construct a third

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

¢ Given two elements in the group, construct a third

¢ Draw a straight line through the y
two points, it will intersect the

elliptic curve in a third point. f

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

¢ Given two elements in the group, construct a third

¢ Draw a straight line through the y
two points, it will intersect the
elliptic curve in a third point.
Mirror that in the x-axis

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

¢ Given two elements in the group, construct a third

¢ Draw a straight line through the y
two points, it will intersect the
elliptic curve in a third point.
Mirror that in the x-axis

¢ If adding a point to itself, use
the tangent line

LINKOPING
II." UNIVERSITY

Addition on elliptic curves

¢ Given two elements in the group, construct a third

® There is one special case: if the y
line through the two points is
vertical, it will not intersect the

elliptic curve again

* We add the point (o0, 00)
to E

e This is the neutral element, the
“o”

LINKOPING
II." UNIVERSITY

Addition on elliptic curves

¢ Given two elements in the group, construct a third

The point (oo, 00) to E is the 4
neutral element, the “0” :

That is, (00, 00) + (x,y) = (x,y)

This also means that —(x, y) is
(x, =)

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

Addition law: On the elliptic curve
E={(xy):y?>=x3+bx+c},
(x3,y3) = (x1, 1) + (x2, 2)
is calculated as follows:

® If (x1, y1) = (x2, —y2), then (x3, y3) = (o0, 0)

o If (x1,y1) = (00, 20), then (x3, y3) = (x2, y2) (and the other way
around)

* If (x1,1) = (x2, y2), then let m = (3x2 + b)/(2y1), otherwise let
m=(y2 — y1)/(x — x1), and let

(x3,y3) = (m* —x1 — x2, m(x1 — x3) — y1)

LINKOPING
II.“ UNIVERSITY

Multiplication on elliptic curves

¢ Multiplication with an integer is defined through repeated addition

3(x,¥) = (x,¥) + (x,¥) + (x,y)

y

AN

/

LINKOPING
II.“ UNIVERSITY

Multiplication on elliptic curves

¢ Multiplication with an integer is defined through repeated addition

3(x,¥) = (x,¥) + (x,¥) + (x,y)

/

LINKOPING
II.“ UNIVERSITY

Multiplication on elliptic curves

¢ Multiplication with an integer is defined through repeated addition

3(x,¥) = (x,¥) + (x,¥) + (x,y)

y

AN

N

/

LINKOPING
II.“ UNIVERSITY

Discrete elliptic curves
¢ We want to have a discrete set of points. We arrange this by
having coordinates mod p
E={(xy):y?>=x*4 bx+ cmod p}

¢ This is not so easy to draw in a diagram, remember, it is y> mod p

{ x3—x+1

LINKOPING
II.“ UNIVERSITY

Discrete elliptic curves

e Example:
E={(xy):y?>=x>+4x+4mod5}

The points in E are

x=0gives y> =4sothaty =2ory =3
x=1givesy?=9=4sothaty =2ory=3
x =2gives y> =20 =0sothaty =0

x = 3 gives y? = 43 = 3, no square root
x=4gives y> =84 =4sothaty =2ory =3
X =00 gives y = oo

LINKOPING
II.“ UNIVERSITY

Discrete elliptic curves

e Example:
E={(xy):y*=x>+4x+4mod5}
The points in E are

o (00, 00)

LINKOPING
II.“ UNIVERSITY

Elliptic curves

* Addition as we defined it still works on this set (but “straight lines”
mod p need to be handled)

¢ We now have the group operations to use instead of integer
multiplication and exponentiation

¢ Hasse’s Theorem: The number of points N in an Elliptic curve E
mod p obeys

p—1-2/p<N<p—-1+4+2\p

LINKOPING
II.“ UNIVERSITY

Elliptic curves

¢ Addition as we defined it still works on this set (but “straight lines”
mod p need to be handled)

¢ We now have the group operations to use instead of integer
multiplication and exponentiation

¢ Hasse’s Theorem: The number of points N in an Elliptic curve E
mod p obeys

p—1-2/p<N<p—-1+4+2\p

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

Addition law: On the elliptic curve
E={(xy):y?>=x3+bx+c},
(x3,y3) = (x1, 1) + (x2, 2)
is calculated as follows:

® If (x1, y1) = (x2, —y2), then (x3, y3) = (o0, 0)

o If (x1,y1) = (00, 20), then (x3, y3) = (x2, y2) (and the other way
around)

* If (x1,1) = (x2, y2), then let m = (3x2 + b)/(2y1), otherwise let
m=(y2 — y1)/(x — x1), and let

(x3,y3) = (m* —x1 — x2, m(x1 — x3) — y1)

LINKOPING
II.“ UNIVERSITY

Addition on elliptic curves

Addition law: On the elliptic curve
E={(xy):y?>=x3+bx+c},
(x3,y3) = (x1, 1) + (x2, 2)
is calculated as follows:

® If (x1, y1) = (x2, —y2), then (x3, y3) = (o0, 0)

o If (x1,y1) = (00, 20), then (x3, y3) = (x2, y2) (and the other way
around)

* If (x1,1) = (x2, y2), then let m = (3x2 + b)/(2y1), otherwise let
m = (y» —y)/(2 — x), and let

(x3,y3) = (m* —x1 — x2, m(x1 — x3) — y1)

LINKOPING
II.“ UNIVERSITY

Elliptic curves

* Addition as we defined it still works on this set (but “straight lines”
mod p need to be handled)

¢ We now have the group operations to use instead of integer
multiplication and exponentiation

¢ Hasse’s Theorem: The number of points N in an Elliptic curve E
mod p obeys

p—1-2/p<N<p—-1+4+2\p

LINKOPING
II.“ UNIVERSITY

Discrete Logarithms on elliptic curves

* Remember the discrete logarithm problem: given x and a primitive
root g, find k so that
x =gk mod p

® There is an analog on elliptic curves: given two points A and B on
an elliptic curve, find k so that

B=kA=A+A+ ... +A

¢ This might seem different, but is the equivalent problem. The only
difference is the group operation name (“multiplication or
“addition”)

LINKOPING
II." UNIVERSITY

Discrete Logarithms on elliptic curves

® The discrete logarithm for elliptic curves: given two points A and B
on an elliptic curve, find k so that

B=KkKA=A+A+..+A

* There is an analog for the Polig-Hellman algorithm.
This works well when the smallest integer n such that
nA = oo has only small factors

LINKOPING
II.“ UNIVERSITY

Discrete Logarithms on elliptic curves

® The discrete logarithm for elliptic curves: given two points A and B
on an elliptic curve, find k so that

B=kA=A+A+..+A
® There is an analog for the Polig-Hellman algorithm

* The baby step-giant step algorithm works, but is impractical since
it needs a lot of memory

LINKOPING
II." UNIVERSITY

Discrete Logarithms on elliptic curves

® The discrete logarithm for elliptic curves: given two points A and B
on an elliptic curve, find k so that

B=kA=A+A+..+A
® There is an analog for the Polig-Hellman algorithm
¢ The baby step-giant step algorithm is impractical

¢ But most importantly, there is no analog for the index calculus

- Integer mod p index calculus is based on using small base numbers
(not small exponents as in Polig-Hellman)

- But there are no points on E that are closer to “0” than any other
points, the distance to (oo, oo) is the same for all other points

LINKOPING
II." UNIVERSITY

Key length

Table 7.2: Key-size Equivalence.
Security (bits)| RSA DLOG EC
field size|subfield

48 480 480] 96 96
56| 640 640| 112 |112
64| 816 816/ 128 |128
80| 1248 1248/ 160 [160
112| 2432 2432 224 (224
128| 3248 3248 256|256
160| 5312 5312 320 (320
192| 7936 7936] 384 |384
256(15424| 15424 512 |512

Table 7.3: Effective Key-size of Commonly used RSA/DLOG Keys.

RSA/DLOG Key|Security (bits)
512 50

768 62

1024 73

1536 89

2048 103

From “ECRYPT Il Yearly Report on Algorithms and Keysizes (2011-2012)”

LINKOPING

o UNIVERSITY

Trapdoor one-way functions

¢ A trapdoor one-way function is a function that is easy to compute
but computationally hard to reverse

» Easy to calculate xA from x
« Hard to invert: to calculate x from xA

¢ A trapdoor one-way function has one more property, that with
certain knowledge it is easy to invert, to calculate x from xA

* There is no proof that trapdoor one-way functions exist, or even
real evidence that they can be constructed

LINKOPING
II." UNIVERSITY

Standard (m mod p) ElGamal encryption

® Choose a large prime p, and a primitive root « mod p. Also, take a
random integer a and calculate
8 =a’mod p

* The public key is the values of p, a, and 3, while the secret key is
the value a

® Encryption uses a random integer k with gcd(k, p — 1) = 1, and the
ciphertext is the pair (¥, s¥m), both mod p

¢ Decryption is done with a, by calculating

(@) 72(B*m) = (=) (a® m) = mmod p

LINKOPING
II." UNIVERSITY

Elliptic curve ElGamal encryption

® Choose an elliptic curve £ mod a large prime p, and a point o on
E. Also, take a random integer a and calculate 5 = aa

The public key is £ and the values of p, «, and 3, while the secret
key is the value a

Encryption uses a random integer k, and the ciphertext is the pair
(ka, kB 4+ m)

¢ Decryption is done with a, by calculating

—a(ka) + (kB + m) = —aka + k(aa) + m=m

LINKOPING
II.“ UNIVERSITY

Representing plaintext on elliptic curves

¢ Unfortunately, it is not simple to represent a given plaintext as a
point on E

¢ Even worse, there is actually no polynomial time algorithm that
can write down all points of an elliptic curve

® There is a method that will work with high probability:

+ The message m should be in the x-coordinate, but there is no
guarantee that m3 + bm + c is a square mod p

+ Each number x has a probability of about 1/2 that x> + bx + ¢
is a square, so put a few bits at the end of m and run through
all possible values

+ If the number of possible values is K, the risk of failure is 2%

LINKOPING
II." UNIVERSITY

Standard (integer mod p) Diffie-Hellman key exchange

¢ Use two one-way functions and g: exponentiation mod p (of a
primitive root «), the symmetry is

(a?)” = (a”)? mod p

® This cannot be used for encryption/signing because one does not
recover a or b.

¢ But it can be used for key exchange:
parameters p and «

+ Alice takes a secret random a and makes o2 public
+ Bob takes a secret random b and makes o’ public
« Both can now create k = (a?)? = («?)? mod p

LINKOPING
II." UNIVERSITY

Elliptic curve Diffie-Hellman key exchange

¢ Use two one-way functions f and g: multiplication on an elliptic
curve E (of a point «), the symmetry is

b(aa) = a(ba)

® This cannot be used for encryption/signing because one does not
recover a or b.

¢ But it can be used for key exchange:
parameters £, p and o

+ Alice takes a secret random a and makes a« public
+ Bob takes a secret random b and makes b« public
+ Both can now create k = b(ac) = a(ba)

LINKOPING
II." UNIVERSITY

Standard (mod p) EIGamal signatures

e Choose a large prime p, and a primitive root « mod p. Also, take a
random integer a and calculate 3 = o® mod p

* The public key is the values of p, a, and 3, while the secret key is
the value a

¢ Signing uses a random integer k with gcd(k, p — 1) = 1, and the
signature is the pair (r, s) where

r=a*mod p
s=kY(m—ar)mod (p—1)

¢ Verification is done comparing 5"r°* and o™ mod p, since

ﬁrrs — aarak(m—ar)/k — o™ mod p

LINKOPING
II." UNIVERSITY

Elliptic curve ElGamal signatures

® Choose an elliptic curve £ mod a large prime p, and a point « on
E. Also, take a random integer a and calculate 5 = aa

* The public key is E and the values of p, a, and 3, while the secret
key is the value a

¢ Signing uses a random integer k with gcd(k, n) = 1 where n is the
number of points on E. The signature is created by inverting k
mod n and forming the pair (r, s) as

r=ka
s=k(m—ar)
¢ Verification is done comparing r. 5 + sr and ma, since
B+ sr = r(aa) + (k= (m — ar,))(ka)

= r(aa) + ma — arca = ma

LINKOPING
II.“ UNIVERSITY

Trapdoor one-way functions
A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse
e Easy to calculate f(x) from x
* Hard to invert: to calculate x from f(x)

A trapdoor one-way function has one more property, that with certain
knowledge it is easy to invert, to calculate x from f(x)

There is no proof that trapdoor one-way functions exist, or even real
evidence that they can be constructed. Examples:

RSA (factoring)

Knapsack (NP-complete but insecure with trapdoor)
Diffie-Hellman + ElGamal (discrete log)

EC Diffie-Hellman + EC ElGamal (EC discrete log)

LINKOPING
II." UNIVERSITY

