Cryptography Lecture 9
Key distribution and trust, Elliptic curve cryptography

LINKOPING
II.“ UNIVERSITY



Key Management

® The first key in a new connection or
association is always delivered via a
courier

® Once you have a key, you can use
that to send new keys

o |f Alice shares a key with Trent and
Trent shares a key with Bob, then
Alice and Bob can exchange a key
via Trent (provided they both trust
Trent)
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Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
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Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
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Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
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Key distribution center, key server

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can receive a key from Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
<
&
o
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Key distribution center, key server

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can receive a key from Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT

[Aice, 16|
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Key distribution center, Blom key pre-distribution

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
and Alice and Bob each have a public id ra, rg, they can recieve
key-generation info from Trent (provided they both trust Trent)

Trent
Key distribution center
KAT, KBT: a, b, C
ay=a-+ bry, by =b+ cry

e o e
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Key distribution center, Station-To-Station (STS) protocol

¢ What about Diffie-Hellman key exchange?

Trent
Key distribution center
Kar, KT

a® mod p

[Aice Farf—_{Bob Kar]

aP mod p
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Key distribution center, Station-To-Station (STS) protocol

¢ What about Diffie-Hellman key exchange?

e Eve can do an “intruder-in-the-middle”

Trent
Key distribution center
Kat, Ket
a? mod p af mod p
[Aice, Kar e Evel—_{Bob, K]
a® mod p ab mod p
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Key distribution center, Station-To-Station (STS) protocol

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KT

«? mod p

(Aice, Kor | [Bob K]

aP mod p
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Key distribution center, Station-To-Station (STS) protocol

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KgT

«? mod p

aP mod p
Alice, Ko I Bob, Kgt

EKAB (ngA(Oéa, ab))

Ek ;5 (siga(a?, ab))
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Key distribution center, Station-To-Station (STS) protocol

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KgT

EKAB (ngA(Oéa, ab))

Ek ;5 (siga(a?, ab))
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Key distribution center, Station-To-Station (STS) protocol

¢ [f Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can use Trent to verify that they exchange key
with the right person

Trent
Key distribution center
Kar, KgT

Alice, Kar —_ I Bob, Kgt

EKAB (sigA(oza, ab))

Ek ;5 (siga(a?, ab))
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Key distribution center

¢ If Alice shares a key with Trent and Trent shares a key with Bob,
then Alice and Bob can exchange a key via Trent (provided they
both trust Trent)

Trent
Key distribution center
Kar, KT
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Key distribution center, replay attacks

e But perhaps Eve has broken a previously used key, and intercepts
Alice’s request

Trent
Key distribution center
Kar, KpT
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Key distribution center, replay attacks

e But perhaps Eve has broken a previously used key, and intercepts
Alice’s request

® Then she can fool Bob into communicating with her

Trent
Key distribution center
Kar, KT
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Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

Trent
Key distribution center
B Kar, KT
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Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

Trent
Key distribution center
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Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

® But now, Eve can pretend to be Bob and make a request to Trent

Trent
Key distribution center
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Key distribution center, wide-mouthed frog

¢ Alice and Trent add time stamps to prohibit the attack

¢ But now, Eve can pretend to be Bob and make a request to Trent,
who will forward the key to Alice

Trent
Key distribution center
B Kar KeT o S

Alice, K
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Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, KT
o
o
N
]
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Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kat, KeT
\\(\
\\\Oq’ 2: Ex,; (Ks||IDgl|r1]|Exkgy (Ks||IDa))
\Q?
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Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, KsT
\\(\
\\\Oq’ 2: Ex,; (Ks||IDgl|r1]|Exkgy (Ks||IDa))
) 3: Exgy (Ks||IDa)

/\
Bob, KT

Alice, Kat
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Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, Ket
\\(\
\\\Oq’ 2: Ex, (Ks||IDglIr|Ekgr (Ks|IDa))
v.
D 3: Exgy (Ks]|IDa)

Alice, Kat | Bob, Kg1
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Key distribution center, Needham-Schroeder key agreement

¢ Another variation is to use nonces to prohibit the replay attack

Trent
Key distribution center
Kar, KsT

2: Ex,; (Ks||IDglIrl|Ekgy (Ksl|IDa))

3: Exgr (Ksl||IDa)

s BT

yl
A)
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Key distribution center, Needham-Schroeder key agreement

® Another variation is to use nonces to prohibit the replay attack

¢ |f Eve ever breaks one session key, she can get Bob to reuse it

Trent
Key distribution center
Kar, KT

1: EKBT(KSHIDA)

. ,ms_(m)\ Bob, K,
e or) (B oo ]
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Kerberos

Trent
Kc, Kg
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Grant

Serge

A client, Cliff
An authentication server, Trent
An authorization server, Grant

A service server, Serge



Kerberos

Trent
Kc, Kg
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Cliff
Kc

Grant
Ke, Ks

Serge

A client, Cliff
An authentication server, Trent
An authorization server, Grant

A service server, Serge

They share keys K¢, Kg, Ks



Kerberos

Trent
Kc, Kg
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Grant
Kg, Ks

Cliff
Kc

Serge

1. Cliff sends Trent ID¢||/D¢



Kerberos

Trent
Kc, Kg
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Grant
Kg, Ks

Cliff
Kc

Serge

1. Cliff sends Trent ID¢||/D¢

2. Trent responds width Ex (Kcg)|| TGT
where TGT = /D(;||EKG(/Dc||t1||ch)



Kerberos

Trent

Ke. Kg
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Grant
Ke, Ks

Cliff
Kc

Serge

1. Cliff sends Trent ID¢||/D¢

2. Trent responds width Ex (Kcg)|| TGT
where TGT = IDGHEKG(IDC”tlHKGC)

3. Cliff sends Grant Ex.(IDc||t2)|| TGT



Kerberos

Trent
Kc, Kg

Grant
Ke, Ks

\W/4

Cliff
Kc

Serge
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Cliff sends Trent ID¢||/D¢

Trent responds width Ex.(Kcg)|| TGT
where TGT = IDGHEKG(IDC”tlHKGC)

3. Cliff sends Grant Ex.(IDc||t2)|| TGT

Grant responds with Ex..(Kcs)||ST
where ST = EKS(IDC||t3||texpir.||KCS)



Kerberos

Trent
Ke. Kg
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\W/4

Grant
Ke, Ks

Cliff
Kc

h 4

Serge

—

Cliff sends Trent ID¢||/D¢

Trent responds width Ex.(Kcg)|| TGT
where TGT = /Dg||EKG(/Dc||t1||Kgc)

3. Cliff sends Grant Ex.(IDc||t2)|| TGT

Grant responds with Ex..(Kcs)||ST
where ST = EKS(IDC||t3||texpir.||KCS)

Cliff sends Serge Ex . (IDc||t2)||ST and
can then use Serge’s services




Public key distribution

¢ Public key distribution uses a Public Key Infrastructure (PKI)

Certification Authority
ST, {e,-}
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Public key distribution, using Certification Authorities

¢ Public key distribution uses a Public Key Infrastructure (PKI)

¢ Alice sends a request to a Certification Authority (CA) who
responds with a certificate, ensuring that Alice uses the correct
key to communicate with Bob

Certification Authority
Sint {e,-}
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Public key distribution, using X.509 certificates

¢ The CAs often are commercial companies, that are assumed to be
trustworthy

¢ Many arrange to have the root certificate packaged with IE,
Mozilla, Opera,. ..

* They issue certificates for a fee

® They often use Registration Authorities (RA) as sub-CA for
efficiency reasons
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Public key distribution, X.509 certificates in your browser

@ Jan-Ake Larsson - Mozilla Firefox
e Edit View History Bookmarks Tools Help

- A6 Teyliuselalan ——
i Most Visitedv [6)Release Notes [EFedora Projectv [Red Hatv [EJFree Contentv 4 Logga in pa Kurspla...

# Jan-Ake Larsson L

Firefox Preferences o x
= < <

T -

General Tabs Content Applications Privacy Security | ./

General | Network | Update | Encryption

Protocols
Use SSL 3.0

6 1 Gversice | andra sokmigheter

,L Linkpings universitet

Samhille Press Anstilld

Certificate Manager

INSTITUTIONEN FOR

Your Certificates | People | Servers | Authorities | Others |
When a server req|

B ISYs huvudsida

O select one auto{ | You have certificates on file that identify these certificate authorities:
INFORMATIONSKODNI!
()

Certificate Name Security Device "= 1=
B ICGs huvudsid View Certificats DigiCert Global Root CA Builtin Object Token -
- DigiCert High Assurance EV CA-1  Software Security Device
EANAKEILARESON] DigiCert High Assurance CA-3 Software Security Device
B Huvudsida DigiNota I
PTTr—— DigiNotar Root CA Builtin Object Token
R < Digital Signature Trust
= Grunduibidning DST ACES CA X6 Builtin Object Token
e ] < Digital Signature Trust Co. i i
- Digital Signature Trust Co. Global CA 1 Builtin Object Token
B Vart kvantkryptografisystem, Digital Signature Trust Co. Global CA 3 Builtin Object Token
B Forskning om Kassiska  DST Root CA X3 Builtin Object Token
delsystem (GENIT) | | |vDisigas. ~]
B Kvantkrypto knéckt och lagal View... Edit... Import... Export... Delete..
(ran 2008y Help J { J [mpore.. ] [ export... | |
= FAQom
B Pressarkiv, Kvantkrypto B Aysajan Abid

Done
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Public key distribution, using web of trust

* No central CA

e Users sign each other’s public key
(hashes)

® This creates a “web of trust”
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Public key distribution, using web of trust (PGP and GPG)

* No central CA

e Users sign each other’s public key
(hashes)

® This creates a “web of trust”

e Each user keeps a keyring with
the keys (s)he has signed

¢ The secret key is stored on a
secret keyring, on h{er,is}
computer

* The public key(s) and their
signatures are uploaded to key
servers
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Public key distribution, a web-of-trust path

135EA668

Richard Stallman (Chief GNUisance)

<rms@gnu.org>

6BFDS49F 2BSS 607559E6 scoec || [pa) CAETEETE ABE6D 9ED101EF 44|jsB
Martin Michlmayr |Karl ||Benjamin Hill ||Joach | |[Be Peter Palfrader | K8°1R Michael Banck| |al|He
<tbmacyrius.com> ||sgey | smakoeatdot.cc || <jose || ||<b <geys <mbanckedsbia | |l<allsn
Y, ¢
00DECD || CD1548 | E10FS02 | BABSE2Z ||8174 (202 ||EDBF |8 | [ |50 {co | 82sEE BF3BELDD F5C752 | |[FAF24 |D
Alexan ||Alexan |Marcus |Marcus |Toll||Car|Marc |8 ||| |Pa|Da|Matti| | Ralle Svensson |Russel | ||2ndre |T
<alexa ||<alexa | <protag | <marcus ||<tfh ||<en ||<mut |<|| | |<p <m | <masw | | <kallealysator. | <russe | | <andr |<
=7 s,
o I
°® . 'O’ i ‘\
EBCB0C34 239F7 ||9F ||33|| Fasnoasa ||7a||B0||43||asces ||BD92F | |cBIEE
Jorgen Cederlof Leif |[|Jo||Ka||[Marcus Gusta||To||Pe||Ri||Rent ||alber ||Par a
<joglysator.liu.se> <leif ||<j||<c||<gaspodealys||<t | [<p||<e||<kent ||<albe||<para
30FDD7LA

Jan-ake Larsson
<jalaremai.liu.se>
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

¢ This is a client-server handshake procedure to establish key

® The server (but not the client) is authenticated (by its certificate)
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ClientHello
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientHello

ServerHello,. ..

LINKOPING
II." UNIVERSITY




Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

ClientHello

ServerHello,. ..

ClientKeyExchange
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with the
PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for the
two directions of communication

ClientHello

ServerHello,. ..

ClientKeyExchange
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello: highest TLS protocol version, random number, suggested public key
systems + symmetric key systems + hash functions + compression
algorithms

ServerHello, Certificate, ServerHelloDone: chosen protocol version, a (different) random
number, system choices, public key

ClientKeyExchange: PreMasterSecret, encrypted with the server’s public key

(Master secret): creation of master secret using a pseudorandom function, with the
PreMasterSecret as seed

(Session keys): session keys are created using the master secret, different keys for the
two directions of communication

ChangeCipherSpec, Finished authenticated and encrypted, containing a MAC for the
previous handshake messages

ClientHello

ServerHello,. ..

= ClientKeyExchange >
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello

ServerHello,. ..

- ClientKeyExchange g

e SSL 1.0 (no public release), 2.0 (1995), 3.0 (1996), originally by
Netscape

e TLS 1.0 (1999), changes that improve security, among other things
how random numbers are chosen
+ Sensitive to CBC vulnerability discovered 2002,
demonstrated by BEAST attack 2011
» Current problem: TLS 1.0 is fallback if either end does not
support higher versions
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello

ServerHello,...
.- ClientKeyExchange

TLS 1.1 (2006), added protection against CBC attacks by explicit
IV specification

TLS 1.2 (2008), e.g., change MD5-SHA1 to SHA256
Never fall back to SSL 2.0 (2011)
TLS 1.3 (August 2018), many improvements
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Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

ClientHello, ClientKey

ServerHello,. ..

e TLS 1.3 (August 2018), many improvements

- CBC is gone, beacuse of BEAST

- Static-RSA-key exchange is removed (!), no forward secrecy

- MDS5 (1), RC4, SHA1 and so-called “Export” algorithms
removed

- More efficient session startup, less TCP packets
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Forward secrecy

¢ Forward secrecy: Even if the key-distribution cipher is broken, only
the current and possibly future sessions are broken, not the
previous sessions

¢ RSA as key transport does not give forward secrecy, while RSA as
signing algorithm may give forward secrecy

e STS (DH) gives forward secrecy if new secrets a and b are used
for each session (so-called “Ephemeral DH”, but beware of reusing
the prime p)

® This property does not only depend on the cipher suite used, but
on the details of how it is used
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Key length and the use of Elliptic Curves

Table 7.2: Key-size Equivalence.
Security (bits)| RSA DLOG EC
field size|subfield

48 480 480] 96 96
56| 640 640| 112 |112
64| 816 816/ 128 |128
80| 1248 1248/ 160 [160
112| 2432 2432 224 (224
128| 3248 3248 256|256
160] 5312 5312 320 (320
192| 7936 7936] 384 |384
256(15424| 15424 512 |512

Table 7.3: Effective Key-size of Commonly used RSA/DLOG Keys.

RSA/DLOG Key|Security (bits)
512 50

768 62

1024 73

1536 89

2048 103

From “ECRYPT Il Yearly Report on Algorithms and Keysizes (2011-2012)”
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Elliptic curves

¢ An elliptic curve is the set of solutions to the equation
v =x3+ax®+bx+c

® These solutions are not ellipses, the name elliptic is used for
historical reasons and has do to with the integrals used when
calculating arc length in ellipses:

/b dx
2 Vx3+ax2+bx+c
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Elliptic curves

® An elliptic curve is the set
E={(x.y):y*=x>+ax* + bx +c}
e Examples:

Y x3 — x { x3—x+1

DN :
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Elliptic curves

¢ Most of the time a “depressed” cubic is enough
E={(xy):y>=x>+bx+c}

e Examples:

x> — X A xX3—x+1

DN :
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Elliptic curves

* You do not want “singular curves” with double or triple roots
E={(xy):y>=x>+bx+c}

e Examples:

{X3+X2—X—1 A xX3—x+1
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Elliptic curves

® An elliptic curve is the set

E={(xy):y*=x>+bx+c}

® Previously we have used
integers (mod p) and
multiplication
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Elliptic curves

® An elliptic curve is the set

E={(xy):y*=x>+bx+c}

® Previously we have used the
multiplicative group of
integers mod p

¢ We need a group operation
on points of E, we'll call it
“addition”
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Addition on elliptic curves

¢ Given two elements in the group, construct a third
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Addition on elliptic curves

¢ Given two elements in the group, construct a third

¢ Draw a straight line through the y
two points, it will intersect the

elliptic curve in a third point. f
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Addition on elliptic curves

¢ Given two elements in the group, construct a third

¢ Draw a straight line through the y
two points, it will intersect the
elliptic curve in a third point.
Mirror that in the x-axis
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Addition on elliptic curves

¢ Given two elements in the group, construct a third

¢ Draw a straight line through the y
two points, it will intersect the
elliptic curve in a third point.
Mirror that in the x-axis

¢ If adding a point to itself, use
the tangent line
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Addition on elliptic curves

¢ Given two elements in the group, construct a third

® There is one special case: if the y
line through the two points is
vertical, it will not intersect the

elliptic curve again

* We add the point (o0, 00)
to E

e This is the neutral element, the
“o”
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Addition on elliptic curves

¢ Given two elements in the group, construct a third

The point (oo, 00) to E is the 4
neutral element, the “0” :

That is, (00, 00) + (x,y) = (x,y)

This also means that —(x, y) is
(x, =)
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Addition on elliptic curves

Addition law: On the elliptic curve
E={(xy):y?>=x3+bx+c},
(x3,y3) = (x1, 1) + (x2, 2)
is calculated as follows:

® If (x1, y1) = (x2, —y2), then (x3, y3) = (o0, 0)

o If (x1,y1) = (00, 20), then (x3, y3) = (x2, y2) (and the other way
around)

* If (x1,1) = (x2, y2), then let m = (3x2 + b)/(2y1), otherwise let
m=(y2 — y1)/(x — x1), and let

(x3,y3) = (m* —x1 — x2, m(x1 — x3) — y1)
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Multiplication on elliptic curves

¢ Multiplication with an integer is defined through repeated addition

3(x,¥) = (x,¥) + (x,¥) + (x,y)

y

AN

/
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Multiplication on elliptic curves

¢ Multiplication with an integer is defined through repeated addition

3(x,¥) = (x,¥) + (x,¥) + (x,y)

/
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Multiplication on elliptic curves

¢ Multiplication with an integer is defined through repeated addition

3(x,¥) = (x,¥) + (x,¥) + (x,y)

y

AN

N

/
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Discrete elliptic curves
¢ We want to have a discrete set of points. We arrange this by
having coordinates mod p
E={(xy):y?>=x*4 bx+ cmod p}

¢ This is not so easy to draw in a diagram, remember, it is y> mod p

{ x3—x+1
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Discrete elliptic curves

e Example:
E={(xy):y?>=x>+4x+4mod5}

The points in E are

x=0gives y> =4sothaty =2ory =3
x=1givesy?=9=4sothaty =2ory=3
x =2gives y> =20 =0sothaty =0

x = 3 gives y? = 43 = 3, no square root
x=4gives y> =84 =4sothaty =2ory =3
X =00 gives y = oo
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Discrete elliptic curves

e Example:
E={(xy):y*=x>+4x+4mod5}
The points in E are

o (00, 00)
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Elliptic curves

* Addition as we defined it still works on this set (but “straight lines”
mod p need to be handled)

¢ We now have the group operations to use instead of integer
multiplication and exponentiation

¢ Hasse’s Theorem: The number of points N in an Elliptic curve E
mod p obeys

p—1-2/p<N<p—-1+4+2\p
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Elliptic curves

¢ Addition as we defined it still works on this set (but “straight lines”
mod p need to be handled)

¢ We now have the group operations to use instead of integer
multiplication and exponentiation

¢ Hasse’s Theorem: The number of points N in an Elliptic curve E
mod p obeys

p—1-2/p<N<p—-1+4+2\p

LINKOPING
II.“ UNIVERSITY




Addition on elliptic curves

Addition law: On the elliptic curve
E={(xy):y?>=x3+bx+c},
(x3,y3) = (x1, 1) + (x2, 2)
is calculated as follows:

® If (x1, y1) = (x2, —y2), then (x3, y3) = (o0, 0)

o If (x1,y1) = (00, 20), then (x3, y3) = (x2, y2) (and the other way
around)

* If (x1,1) = (x2, y2), then let m = (3x2 + b)/(2y1), otherwise let
m=(y2 — y1)/(x — x1), and let

(x3,y3) = (m* —x1 — x2, m(x1 — x3) — y1)
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Addition on elliptic curves

Addition law: On the elliptic curve
E={(xy):y?>=x3+bx+c},
(x3,y3) = (x1, 1) + (x2, 2)
is calculated as follows:

® If (x1, y1) = (x2, —y2), then (x3, y3) = (o0, 0)

o If (x1,y1) = (00, 20), then (x3, y3) = (x2, y2) (and the other way
around)

* If (x1,1) = (x2, y2), then let m = (3x2 + b)/(2y1), otherwise let
m = (y» —y)/(2 — x), and let

(x3,y3) = (m* —x1 — x2, m(x1 — x3) — y1)
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Elliptic curves

* Addition as we defined it still works on this set (but “straight lines”
mod p need to be handled)

¢ We now have the group operations to use instead of integer
multiplication and exponentiation

¢ Hasse’s Theorem: The number of points N in an Elliptic curve E
mod p obeys

p—1-2/p<N<p—-1+4+2\p
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Discrete Logarithms on elliptic curves

* Remember the discrete logarithm problem: given x and a primitive
root g, find k so that
x =gk mod p

® There is an analog on elliptic curves: given two points A and B on
an elliptic curve, find k so that

B=kA=A+A+ ... +A

¢ This might seem different, but is the equivalent problem. The only
difference is the group operation name (“multiplication or
“addition”)
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Discrete Logarithms on elliptic curves

® The discrete logarithm for elliptic curves: given two points A and B
on an elliptic curve, find k so that

B=KkKA=A+A+..+A

* There is an analog for the Polig-Hellman algorithm.
This works well when the smallest integer n such that
nA = oo has only small factors
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Discrete Logarithms on elliptic curves

® The discrete logarithm for elliptic curves: given two points A and B
on an elliptic curve, find k so that

B=kA=A+A+..+A
® There is an analog for the Polig-Hellman algorithm

* The baby step-giant step algorithm works, but is impractical since
it needs a lot of memory
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Discrete Logarithms on elliptic curves

® The discrete logarithm for elliptic curves: given two points A and B
on an elliptic curve, find k so that

B=kA=A+A+..+A
® There is an analog for the Polig-Hellman algorithm
¢ The baby step-giant step algorithm is impractical

¢ But most importantly, there is no analog for the index calculus

- Integer mod p index calculus is based on using small base numbers
(not small exponents as in Polig-Hellman)

- But there are no points on E that are closer to “0” than any other
points, the distance to (oo, oo) is the same for all other points
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Key length

Table 7.2: Key-size Equivalence.
Security (bits)| RSA DLOG EC
field size|subfield

48 480 480] 96 96
56| 640 640| 112 |112
64| 816 816/ 128 |128
80| 1248 1248/ 160 [160
112| 2432 2432 224 (224
128| 3248 3248 256|256
160| 5312 5312 320 (320
192| 7936 7936] 384 |384
256(15424| 15424 512 |512

Table 7.3: Effective Key-size of Commonly used RSA/DLOG Keys.

RSA/DLOG Key|Security (bits)
512 50

768 62

1024 73

1536 89

2048 103

From “ECRYPT Il Yearly Report on Algorithms and Keysizes (2011-2012)”
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Trapdoor one-way functions

¢ A trapdoor one-way function is a function that is easy to compute
but computationally hard to reverse

» Easy to calculate xA from x
« Hard to invert: to calculate x from xA

¢ A trapdoor one-way function has one more property, that with
certain knowledge it is easy to invert, to calculate x from xA

* There is no proof that trapdoor one-way functions exist, or even
real evidence that they can be constructed
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Standard (m mod p) ElGamal encryption

® Choose a large prime p, and a primitive root « mod p. Also, take a
random integer a and calculate
8 =a’mod p

* The public key is the values of p, a, and 3, while the secret key is
the value a

® Encryption uses a random integer k with gcd(k, p — 1) = 1, and the
ciphertext is the pair (¥, s¥m), both mod p

¢ Decryption is done with a, by calculating

(@) 72(B*m) = (=) (a® m) = mmod p
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Elliptic curve ElGamal encryption

® Choose an elliptic curve £ mod a large prime p, and a point o on
E. Also, take a random integer a and calculate 5 = aa

The public key is £ and the values of p, «, and 3, while the secret
key is the value a

Encryption uses a random integer k, and the ciphertext is the pair
(ka, kB 4+ m)

¢ Decryption is done with a, by calculating

—a(ka) + (kB + m) = —aka + k(aa) + m=m
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Representing plaintext on elliptic curves

¢ Unfortunately, it is not simple to represent a given plaintext as a
point on E

¢ Even worse, there is actually no polynomial time algorithm that
can write down all points of an elliptic curve

® There is a method that will work with high probability:

+ The message m should be in the x-coordinate, but there is no
guarantee that m3 + bm + c is a square mod p

+ Each number x has a probability of about 1/2 that x> + bx + ¢
is a square, so put a few bits at the end of m and run through
all possible values

+ If the number of possible values is K, the risk of failure is 2%
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Standard (integer mod p) Diffie-Hellman key exchange

¢ Use two one-way functions  and g: exponentiation mod p (of a
primitive root «), the symmetry is

(a?)” = (a”)? mod p

® This cannot be used for encryption/signing because one does not
recover a or b.

¢ But it can be used for key exchange:
parameters p and «

+ Alice takes a secret random a and makes o2 public
+ Bob takes a secret random b and makes o’ public
« Both can now create k = (a?)? = («?)? mod p

LINKOPING
II." UNIVERSITY




Elliptic curve Diffie-Hellman key exchange

¢ Use two one-way functions f and g: multiplication on an elliptic
curve E (of a point «), the symmetry is

b(aa) = a(ba)

® This cannot be used for encryption/signing because one does not
recover a or b.

¢ But it can be used for key exchange:
parameters £, p and o

+ Alice takes a secret random a and makes a« public
+ Bob takes a secret random b and makes b« public
+ Both can now create k = b(ac) = a(ba)
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Standard (mod p) EIGamal signatures

e Choose a large prime p, and a primitive root « mod p. Also, take a
random integer a and calculate 3 = o® mod p

* The public key is the values of p, a, and 3, while the secret key is
the value a

¢ Signing uses a random integer k with gcd(k, p — 1) = 1, and the
signature is the pair (r, s) where

r=a*mod p
s=kY(m—ar)mod (p—1)

¢ Verification is done comparing 5"r°* and o™ mod p, since

ﬁrrs — aarak(m—ar)/k — o™ mod p
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Elliptic curve ElGamal signatures

® Choose an elliptic curve £ mod a large prime p, and a point « on
E. Also, take a random integer a and calculate 5 = aa

* The public key is E and the values of p, a, and 3, while the secret
key is the value a

¢ Signing uses a random integer k with gcd(k, n) = 1 where n is the
number of points on E. The signature is created by inverting k
mod n and forming the pair (r, s) as

r=ka
s=k(m—ar)
¢ Verification is done comparing r. 5 + sr and ma, since
B+ sr = r(aa) + (k= (m — ar,))(ka)

= r(aa) + ma — arca = ma
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Trapdoor one-way functions
A trapdoor one-way function is a function that is easy to compute but
computationally hard to reverse
e Easy to calculate f(x) from x
* Hard to invert: to calculate x from f(x)

A trapdoor one-way function has one more property, that with certain
knowledge it is easy to invert, to calculate x from f(x)

There is no proof that trapdoor one-way functions exist, or even real
evidence that they can be constructed. Examples:

RSA (factoring)

Knapsack (NP-complete but insecure with trapdoor)
Diffie-Hellman + ElGamal (discrete log)

EC Diffie-Hellman + EC ElGamal (EC discrete log)
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