
Transform Coding of Still Images

February 2018

1 Introduction

1.1 Overview

A transform coder consists of three distinct parts: The transform, the quantizer and
the source coder. In this laboration you will study all three parts and see how the
choice of transform/quantizer/source coder affects the performance of the transform
coder.

The laboration runs in a MATLAB environment. In MATLAB images are naturally
represented as matrices. During the laboration certain test images will be com-
pressed. The test images can be thought of as original images in the sense that they
are stored as raw samples with 24 bits/pixel. This usually gives more colours than
the human eye can discern on a computer screen.

1.2 Preparations

We assume that you have studied the chapters on transform coding, quantization
and entropy coding in the course literature. Read through this document carefully
before the laboration. We also suggest that you read the manual (help <funcname>)
for each function before you use it.

2 Image manipulation in MATLAB

We will be working with colour images. An image can be read into MATLAB using
the command imread. For future manipulation, we change the pixel values to be
floating point values between 0 and 1:

>> im1=double(imread(’image1.png’))/255;

1



The colour image is stored as a 512 × 768 × 3 matrix, meaning that we have one
512×768 matrix for each of the three RGB colour components (red, green and blue).
The image can be viewed using the command imshow:

>> imshow(im1)

We can also view each colour plane separately:

>> im1r=im1(:,:,1); im1g=im1(:,:,2); im1b=im1(:,:,3);

>> imshow(im1r), figure, imshow(im1g), figure, imshow(im1b)

When coding colour images, we usually use the YCbCr colour space (or another
luminance/chrominance colour space), rather than the RGB colour space. To convert
the image back and forth between the different colour spaces, use the functions
rgb2ycbcr and ycbcr2rgb:

>> im1ycbcr=rgb2ycbcr(im1);

See what the luminance and chrominance components look like:

>> im1y=im1ycbcr(:,:,1); im1cb=im1ycbcr(:,:,2); im1cr=im1ycbcr(:,:,3);

>> imshow(im1y), figure, imshow(im1cb), figure, imshow(im1cr)

The luminance component is basically a greyscale version of the colour image, while
the two chrominance components contain information about the colour of the image.

There are six images (named image1.png to image6.png) with varying content that
you can use for your experiments. Take a look at the other images too.

3 Image transformations

The transforms that we will use in this laboration are block-based transforms. The
image is divided into small rectangular blocks that are transformed using a sepa-
rable two-dimensional transform. We will use two kinds of transforms: A discrete
cosine transform (DCT) and a discrete Walsh-Hadamard transform (DWHT). The
MATLAB functions to do the transforms are called bdct and bdwht. As arguments,
the functions take an image and the blocksize to use. Read the manuals for the
functions before using them.

Example:

>> im1yd = bdct(im1y, [8 8]);

This divides the image into blocks of 8 × 8 pixels and does a DCT on each block.

Since we want to be able to treat each transform component separately, the result
of the transform is a matrix where each transformed block is stored as one column
(the columns of the block have just been rearranged into a single column).

2



Inverse transformation is performed with the functions ibdct and ibdwht.

Example:

>> im1yr = ibdct(im1yd, [8 8], [512 768]);

Without quantization, im1y and im1yr should be identical. Due to rounding errors
in the computer, there might be a slight (but negligible) difference.

4 Quantization

The second part of a transform image coder is the quantizer. We will only be
looking at uniform quantization, using the function bquant. This function takes a
transformed image and a quantization parameter as arguments. The quantization
parameter is the stepsize of the uniform quantizer. To perform inverse quantization
(reconstruction), use the function brec.

Example:

>> Q1=0.1;

>> im1ydq = bquant(im1yd, Q1);

>> im1ydr = brec(im1ydq, Q1);

>> im1yr = ibdct(im1ydr, [8 8], [512 768]);

>> figure, imshow(im1yr);

It is also possible to have separate stepsizes for every transform component. The
quantization parameter should then be given as a vector or matrix of quantization
steps, one for each transform component. It is a hard problem to find the optimal
quantization vector for a particular image. Usually it is desirable to have finer
quantization for the low frequency components and coarser quantization for the high
frequency components. A matrix (for blocksize 8 × 8) that varies linearly from low
to high frequencies can be constructed by

>> QL=repmat(1:8, 8, 1); QL=(QL+QL’-9)/8

A quantization matrix can then be constructed in the following way.

>> k1=0.1; k2=0.3;

>> Q2=k1*(1+k2*QL);

>> im1ydq = bquant(im1yd, Q2);

>> im1ydr = brec(im1ydq, Q2);

>> im1yr = ibdct(im1ydr, [8 8], [512 768]);

>> figure, imshow(im1yr);

k2 affects how big the difference between the smallest and the largest stepsize is and
should be chosen between 0 and 1. k1 adds a constant value to all stepsizes. Setting

3



k2 to zero corresponds to having the stepsize k1 for all transform components.

The distortion (the mean square error) between the original image and a recon-
structed image can be calculated as

>> dist = mean((im1y(:)-im1yr(:)).^2)

Usually, distortion in images is measured by the PSNR (Peak-to-peak Signal to Noise
Ratio). The PSNR is defined as

PSNR = 10 · log10
x2pp
D

[dB]

where xpp is the peak-to-peak value of the signal, ie the difference between the largest
and the smallest value of the signal. For our images, where the scaled pixels can
take values between 0 and 1, it is given by

>> psnr = 10*log10(1/dist)

There is no standard way of defining distortion and PSNR for colour images. The
simplest way is to just average the distortions of the three colour components (red,
green and blue).

By changing the quantization step (Q1 or Q2), you get reconstructed images with
different quality. Try quantizing with different quantization steps and see how the
reconstructed image is affected.

5 Source coding

The third part of a transform image coder is the source coder (or entropy coder). In
this lab we’re going to study two methods: Memoryless Huffman coding, using the
function huffman, and JPEG-style coding using runlength coding of zeros combined
with Huffman coding, using the function jpgrate. Neither of these functions perform
the actual coding, they just calculate the number of bits needed.

The source coding is done on the quantized transform image. To be able to do
Huffman coding, we first need to estimate the distribution by calculating a histogram
of the data we want to code. This can be done with the function ihist.

The simplest case is if we use a single Huffman code for all transform components.

Example:

>> p = ihist(im1ydq(:));

>> bits = huffman(p)

4



This returns the total number of bits required to code the quantized data. Note that
the huffman function doesn’t include the cost to code the Huffman tree, and thus
the real number of bits needed would be slightly higher.

Normally, we measure the rate in bits per pixel, which we can get by just dividing
the total number of bits with the image size:

>> bpp = bits/(512*768)

The quantization will of course affect the bit rate: Coarser quantization gives a lower
rate while finer quantization gives a higher rate. Change the quantization parameter
(Q1 or Q2) and see how the rate is affected.

Since the distribution typically is different for different transform components, a
more efficient coding can be performed if we have separate Huffman codes for each
component:

>> bits=0;

>> for k=1:size(im1ydq, 1)

p = ihist(im1ydq(k, :));

bits = bits + huffman(p);

end

>> bpp = bits/(512*768)

The jpgrate function returns a vector of the number of bits needed for each block.
Just sum all the values to get the total number of bits.

>> bits=sum(jpgrate(im1ydq, [8 8]));

>> bpp = bits/(512*768)

6 Chrominance subsampling

Usually, the chrominance signals (Cb and Cr) can be subsampled before coding,
without giving noticeable effects on the image quality. Subsampling can be done
using the function imresize.

Example:

>> im1cb2 = imresize(im1cb, 0.5);

This will subsample the chrominance image with a factor 2 both horizontally and
vertically. The subsampled image should then be coded (transformed, quantized and
entropy coded). In the decoder, the reconstructed chrominance image is upsampled
before transformation back into the RGB colour space

5



>> im1cbr = imresize(im1cb2r, 2);

assuming that the reconstructed subsampled image was called im1cb2r.

7 Own experiments

Now that you know how to use all three parts (transform, quantizer, entropy coder)
it is time for you to experiment freely.

A simple MATLAB function to get you started can be found in transcoder.m.
Copy it to your directory and edit it to suit your needs.

Try coding both greyscale images (use either the luminance component of an YCbCr
image, or the green component of an RGB image) and colour images.

NOTE: When comparing two different coder configurations, you should compare
them at the same rate and check to see which one gives the lowest distortion. Ideally,
the comparison should be done for a whole range of rates. Quality comparisons
should be done both objectively (by comparing PSNR figures) and subjectively (by
looking at the decoded images).

You should find answers to the following questions:

• What source coding method gives the smallest rates?

• What choice of transform (DCT or DWHT) gives the best results?

• What choice of block size gives the best results?

• What quantization method gives the best results, using the same stepsize for
all transform components or using different stepsizes for different transform
components?

• How does chrominance subsampling affect the results?

• What is the lowest rate (in bits per pixel) that gives coded images that are
indistinguishable from the original image at normal viewing distance?

• What is the lowest rate that gives an acceptable image quality?

6



8 Block schedule

7


