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Introduction

This collection of exercises was conceived for the course Image Coding and Data Com-
pression given at Linköping University, Sweden. Most of the problems are taken from old
exams.

Below are some swedish notions translated to english. Some of them might be abbreviated.

Swedish English Abbreviation

Autokorrelationsfunktion
Auto correlation function;
usually denoted RXX(k) or
RXX(τ).

a.c.f.

Spektraltäthet
Power spectral density;
usually denoted Φ(θ) or Φ(f).

p.s.d.

Täthetsfunktion Probability density function. p.d.f.

Reconstruction Error Measures

The distortion between a given set of vectors {xi} and their reconstructions {x̂i} i =
1 . . . n is usually measured as MSE (Mean Square Error) . MSE is defined,

MSE =
1

n

n
∑

i=1

|xi − x̂i|2

where euclidian norm is used. When x is stochastic we also speak about distortion and
most often mean the expected square error, usually denoted D,

D = E
{

|X − X̂|2
}

However, it is most common to express the distortion as a logarithm of the ratio between
the signal variance σ2 = E

{

|X − E {X } |2
}

and D. The SNR (Signal to Noise Ratio)
is defined as,

SNR = 10 log10
σ2

D

It is also possible to speak about SNR when having a deterministic situation, but then of
course using 1

n

∑ |xi −mx|2 for σ2 and MSE for D.
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Part I

Problems

1 Information Theoretic Concepts

1.1 The random variable X takes values in the alphabet {1, 2, 3, 4}. The probabilities
for the different symbols are

PX(1) = PX(2) = PX(3) = PX(4) = 0.25

Calculate H(X).

1.2 The random variable Y takes values in the alphabet {1, 2, 3, 4}. The probabilities
for the different symbols are

PY (1) = 0.5, PY (2) = 0.25, PY (3) = PY (4) = 0.125

Calculate H(Y).

1.3 Suppose that X and Y from 1.1 and 1.2 are independent. Consider the joint source
which generates pairs (X,Y ).

a) Determine PXY (x, y). I.e., Prob(X = x, Y = y) for all x, y!

b) Calculate H(X,Y ).

c) Show that H(X,Y ) = H(X)+H(Y ) holds whenever X and Y are independent!

d) (Generalization) Show that,

H(X1,X2, . . . ,Xn) = H(X1) + . . . +H(Xn)

holds as long as the variables are mutually independent!

1.4 Let Z take values in the alphabet {1, 2, 3, 4}

a) Give an example of a distribution PZ which maximizes H(Z). Is PZ unique?

b) Give an example of a distribution PZ which minimizes H(Z). Is PZ unique?
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1.5 Let U take values in the alphabet {0, 1, 2, . . . ,∞}, with symbol probabilities PU (i) =
qi(1− q).

a) Check that
∞
∑

i=0

PU (i) = 1.

b) Calculate H(U).

c) Calculate the average value of U .

1.6 A binary memory-less source with P = {p, 1 − p} have entropy H. Express the
entropies for the described sources below in terms of H!

a) A source with four symbols with probabilities: P = {p
2
,
1− p

2
,
1− p

2
,
p

2
}

b) A ternary source: P = {p
2
, 1− p,

p

2
}

c) The second order extension: P 2 = {p2, p(1− p), (1− p)p, (1− p)2}.

d) The n:th extension.

1.7 A uniformly distributed random variable X takes values in the alphabet
{0000, 0001, 0010, . . . , 1011} (the numbers 0 to 11 written as four bit binary num-
bers).

a) What is the entropy of each bit?

b) What is the entropy of X?

1.8 A Markov source of order 1 {Xi} has state transition probabilities according to the
figure below. Calculate the stationary probabilities for the states!

0

1 2

0.1

0.5 0.1

0.5

0.8

0.5 0.5
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1.9 Consider the source in 1.8.

a) Calculate the memoryless entropy H(Xi).

b) Calculate the block-entropy for pairs of symbols, i.e. H(Xi,Xi+1). Compare
with H(Xi) +H(Xi+1) = 2 ·H(Xi).

c) Calculate the conditional entropy H(Xi+1 |Xi).

1.10 A partly unknown binary stationary source generates alternating runs of zeros and
ones. The run-lengths r are known to be independent and have the following dis-
tributions:

P (r | zeros) = qr−1
0 (1− q0)

P (r | ones) = qr−1
1 (1− q1)

a) What are the expected run-lengths r0 and r1 [symbols/run]?

b) What are the entropies H0 and H1 of the runs?

c) Give a bound for the entropy-rate of the source-symbols! Suggest a source-
model which can generate the run-lengths!

Discussion: Might the underlying source have even lower entropy than your
bound?

2 Source Coding

2.1 A suggested binary code for the alphabet A = {1, . . . , 8} has the code-word lengths
l1 = 2, l2 = 2, l3 = 3, l4 = 4, l5 = 4, l6 = 5, l7 = 5 and l8 = 6. Can a prefix code
with these lengths be constructed?

2.2 A memoryless source has the infinite alphabet A = {1, 2, 3, . . . , } and symbol prob-
abilities P = {1

2 ,
1
4 ,

1
8 , . . .}, ie P (i) = 2−i, i ∈ A.

Construct an optimal binary prefix code for the source and calculate the expected
data rate R in bits/symbol.

2.3 A memoryless source has the alphabet A = {x, y, z} and symbol probabilities

P (x) = 0.6, P (y) = 0.3, P (z) = 0.1

a) What is the entropy of the source?

b) Construct a Huffman code for single symbols from the source and calculate the
rate of the code in bits/symbol.

c) Construct a Huffman code for pairs of symbols from the source and calculate
the rate of the code in bits/symbol.
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2.4 The following Markov source is given where p = 0.9:

a b

1− p

1− p

p p

Construct Huffman codes for coding two and three symbols with each codeword.
Calculate the rates (in bits/symbol) for the two codes. Which code is best?

2.5 Consider the source in problem 2.4. It produces runs of a and b. Instead of coding
symbols, we can code the length of each run. We thus create a new source Y which
has an infinite alphabet of run lengths B = {1, 2, 3, . . .}.

a) What is the probability of a run of length r?

b) What is the average run length (in symbols/run) ?

c) What is the entropy of Y (in bits/run)?

d) What is the entropy rate of the original source (in bits/symbol) ?

2.6 We now want to make a simple systematic code for the run lengths of the source in
2.4.

a) Construct a four bit fixed length code for the run lengths 1 to 15, ie:

run length codeword

1 0000

2 0001

3 0010

4 0011

5 0100

... ...

14 1101

15 1110

Longer runs are coded as 1111 followed by the codeword for a run of length-
15, ie the run length 16 is coded as 1111 0000, the run length 17 is coded as
1111 0001, the run length 42 is coded as 1111 1111 1011 and so on.

Calculate the rate of the code in bits/symbol.

b) Change the codeword length to five bits and calculate the rate of the code.
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2.7 We want to send documents using a fax. The fax can handle the colours black and
white. It has been noted that text areas and picture areas of the document have
different statistical properties. Documents are coded row-wise according to a time
discrete stationary process with the following conditioned probabilities, which has
been estimated from a large set of data

Colour of Probability of colour of next pixel

current Text area Picture area

pixel black white black white

black 0.5 0.5 0.7 0.3

white 0.1 0.9 0.2 0.8

The probability of being in a text area is 4
5 and the probability of being in a picture

area is 1
5 .

Assume that these estimated probabilities are correct and answer the questions
below.

a) Assume that we can ignore the cost of coding which areas of the document
are text areas and which are picture areas. Give the best upper bound for the
theoretically lowest mean bitrate that documents can be coded with. [bits/pixel]

b) Construct a huffman code for the text areas that has a rate of 0.65 [bits/pixel]
or less.

2.8 Consider the Markov source below (output = state)

A B

C D

0.5

0.5

0.8

0.7

0.1

0.2

0.9 0.3

a) Show that it is possible to encode the output from the source at a mean rate
less than 0.6 bits/symbol.

b) Extend the source to two symbols. Construct Huffman codes for the original
source as well as for the extended source. Calculate the rates of the codes.
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2.9 A memoryless source has alphabet A = {1, 2, 3} and P = {0.6, 0.2, 0.2}. The se-
quence 3112 is to be arithmetically encoded. Assume infinite precision in the regis-
ters and that they are reset before coding of each block of length n. Determine the
code for,

a) n = 2, ie code the two first symbols into one codeword and the next two symbols
into another codeword.

b) n = 4, ie code all four symbols into one codeword.

2.10 A memoryless source has the alphabet A = {1, 2, 3} and the symbol probabilities
P (1) = 0.2, P (2) = 0.75 and P (3) = 0.05.

We want to code the source using arithmetic coding. Show how this works by coding
the sequence

12322

Give both the resulting interval and the corresponding codeword. You can assume
that all calculations can be performed with infinite precision.

2.11 A stationary binary memory source with alphabet A = {1, 2} is to be encoded. The
following pair probabilities P (xi, xi+1) have been estimated with great accuracy and
can be assumed to be the true ones:

P (1, 1) = 1/7
P (1, 2) = 1/7
P (2, 1) = 1/7
P (2, 2) = 4/7

Derive a codeword for the sequence 2, 2, 1, 2 using arithmetic coding. The code
should be based on the conditional probabilities. The previous symbol is assumed
to be 2. Also assume that we have infinite precision and that all four symbols are
coded into one codeword.
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2.12 A system for transmission of simple colour pictures can transmit white, black, red,
blue, green and yellow. The source is modelled as an order-1 Markov process with
the following transition probabilities:

State the prob. for next state
white black red blue green yellow

white 0.94 0.02 0.01 0.01 0.01 0.01
black 0.05 0.50 0.15 0.10 0.15 0.05
red 0.03 0.02 0.90 0.01 0.01 0.03
blue 0.02 0.02 0.02 0.90 0.03 0.01
green 0.02 0.02 0.01 0.03 0.90 0.02
yellow 0.03 0.01 0.03 0.01 0.03 0.89

We use arithmetic coding to code finite sequences of pixels. (I.e., we flush the
coder from time to time.) An in-sequence will be mapped into a unique inverval in
[0 1). In each step the encoder uses the conditional probabilities given the previous
pixel. The colours are ordered in the encoder according to the table with white
corresponding to the interval closest to 0.

a) An in-sequence begins red,white,white. Derive the interval corresponding to
this sequence when the last pixel in the previous sequence was red!

b) We are waiting for a new sequence. The bitstream 110100111100001100 . . .
arrives. What are the two first colours of this sequence? The last pixel in the
previous sequence was black.

2.13 A source has the alphabet A = {a, b}. Code the sequence

ababbaaababbbbaaabaaaaaababba...

using the LZ77 algorithm, with a search buffer of length 15 and a look-ahead buffer
of length 15.

You can check your solution by decoding your codewords without looking at the
original sequence.

2.14 Code the sequence in problem 2.13 with LZ78.

You can check your solution by decoding your codewords without looking at the
original sequence.

2.15 Code the sequence in problem 2.13 with LZW

9



2.16 A source has the alphabet {a, b, c, d, e, f}. A long sequence from the source is
coded using LZW. The resulting index sequence starts like

3, 0, 6, 8, 4, 1, 11, 7, 10, 12, . . .

The starting code book is:

index sequence

0 a

1 b

2 c

3 d

4 e

5 f

Decode the index sequence. Also give the resulting code book.

3 Rate-Distortion

3.1 Determine the rate-distortion function for a gaussian process with p.s.d.,

✲

✻ σ2

B

B−B

3.2 Determine the rate-distortion function R(D) for a gaussian process with p.s.d.,

✲

✻

B−B

2σ2

3B
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3.3 A signal is modelled as a stochastic process X(t) which can be written as the sum of
two independent stationary gaussian processes Y (t) and W (t) with power spectras
depicted below.

✻

✲
f

1

10 KHz

0.5

ΦY (f)

✻

✲
f

1

10 KHz

0.5

ΦW (f)

The independence implies ΦX(f) = ΦY (f) + ΦW (f).

Assume that we have an encoder that is theoretically optimal. Derive the largest
possible signal-to-noise ratio (expressed in dB) for X(t) for which W (t) can be
completely ignored when we encode X(t) with the optimal encoder. In other words,
for which SNR-range of X(t) is it enough to just encode Y (t)?

3.4 We have a video signal that we want to digitize and transfer via an ordinary modem
with the data rate 28800 bits/s. The video signal is modelled as an analog gaussian
process Z(t) with p.s.d.

ΦZ(f) =
1

2A
e−

|f |
A

where A = 300

Z(t)
✲ LP

sampling

✲
R

Quant. ✲
28800 bits/s

modem ✲

The signal Z(t) is band limited with an ideal low pass filter with bandwidth fs
2 and

then sampled with sampling frequency fs. The sampled signal is Max quantized to
R bits/sample. The receiver (not included in the figure) reconstructs the quantized
samples and creates a time continuous signal Ẑ(t) using pulse code modulation.

a) How shall the sampling frequency fs and the bit rate R be chosen so that the
distortion between Z(t) and Ẑ(t) is minimized? What is the resulting signal-
to-noise ratio? All assumptions and simplifications must be motivated.

b) What is theoretically the highest signal-to-noise ratio that we can achieve if we
code Z(t) to the rate 28800 bits/s?
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4 Quantization

4.1 Let X be a continuous uniformly distributed random variable over (−T , T ). De-
termine the reconstruction points for a three-level Max-quantizer and calculate the
expected distortion.

4.2 Let X be a continuous random variable with a laplacian p.d.f.:

f(x) =
1

2a
e−

|x|
a

a) Determine the reconstruction points and regions for a two-level Lloyd-Max-
quantizer and calculate the expected distortion,

D = E
{

(X − X̂)2
}

Tips: Simplify by assuming certain symmetries.

b) Like problem a, but using three reconstruction levels.

4.3 A time-continuous electrical signal X(t) is to be sampled and scalar quantized. X(t)
has p.s.d.,

-15kHz 15kHz

f

Φ( f )
R0

✻

✲

and a uniformly distributed amplitude. Design a coder so that the signal-to-nosie
ratio is at least 30 dB and the bit-rate is kept low. State any assumptions made.

4.4 A zero-mean gaussian stochastic variable with variance σ2 = 5 is to be quantized to
two levels.

a) What is the distortion? Use the formula collection.

b) What is the entropy of the output?

c) Compare with R(D) at the same distortion.

4.5 A gaussian stochastic variable with mean 0 and variance σ2 is represented with two
bits. Which values can the distortion take?

4.6 A zero-mean gaussian stochastic variableX is uniformly quantized (fine quantization
assumed) with step ∆ and then entropy coded. Express the obtained rate RU as a
function of the distortion D. Compare with the rate-distortion function.
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4.7 A laplacian variable X with variance σ2 is uniformly quantized and entropy coded.
Express the distortion D as a function of the rate R and σ2 when fine quantization
is assumed.

The p.d.f. is:

fX(x) =
1√
2σ

e−
√

2|x|
σ

4.8 A random variable X with a triangular distribution is uniformly quantized and
entropy coded. Express the distortion D as a function of the rate R and the variance
σ2 when fine quantization is assumed.

The probability density function is:

fX(x) =











































− 1
a2
x+ 1

a ; 0 ≤ x ≤ a

1
a2
x+ 1

a ; −a ≤ x ≤ 0

0 ; otherwise

4.9 Calculate the mean distortion as a function of the rate when using source adapted
quantization (ie fine Lloyd-Max quantization) of a Laplacian stochastic variable with
zero mean and variance σ2.

The Laplacian probability density function:

fX(x) =
1√
2σ

e−
√

2|x|
σ

4.10 On an ordinary audio CD, sound is represented with 16 bits/sample. The quantizer
that is used is uniform in the interval [−a, a], where a has been chosen such that
a = 6σ. No entropy coding is done.

If we assume that the audio samples come from a gaussian random process with the
variance σ2 and mean 0, how much could be gained (in SNR) if we use Lloyd-Max
quantization instead of uniform quantization?
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4.11 This problem exemplifies the main steps of the LBG-algorithm for training of a so
called codebook for vector-quantization.

Assume we want to jointly quantize two adjacent pixels at a time to one of four
reconstruction points A, B, C or D in R2. We pick 13 sampled pairs (see figure) as
test-data.

a) Calculate the MSE of the given training data set with respect to reconstruction
points and regions in the figure.

b) Suggest how to modify the position of the reconstruction points to decrease the
MSE to a minimum. Verify by calculating the new MSE!

c) Consider these new reconstruction points and suggest how the reconstruction
regions should be modified to minimize the MSE!

1

2

3

4
5

6
7

8

9

10

11

12

13

A

B

C

D

✻

✲

Point X Y

1 -60 -30
2 -30 -40
3 -40 -20
4 -30 -10
5 -10 -15
6 10 0
7 20 5
8 -5 10
9 -5 40

10 20 25
11 20 50
12 35 25
13 50 55
A -40 -40
B 15 -15
C -15 15
D 40 40

4.12 A 1024× 1024 image is divided into blocks which are then vector quantized so that
the resulting rate is 1.5 bits/pixel.

Assume that the quantizer uses full sequential search to find the closest match in the
codebook for each block. Furthermore, assume that the time it takes to compute
the distance between two blocks is 1 ns/dimension.

a) How long will it take to code the image if blocks of size 8× 8 are used?

b) What is the maximum number of pixels/block that can be used if we want to
code the picture in under one second?

c) What is the maximum number of pixels/block that can be used if we want to
code the picture in under one minute?
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5 Linear Predictive Coding

5.1 A time-discrete stationary gaussian signal Xi with mean 0 has the following a.c.f.
in the points 0, 1 and 2: RXX(0) = 1.0, RXX(1) = 0.9, RXX(2) = 0.7

a) Determine the linear predictor of order 1 that minimizes the prediction error
variance. Calculate the prediction error variance.

b) Determine the linear predictor of order 2 that minimizes the prediction error
variance. Calculate the prediction error variance.

5.2 A time-discrete signal Xi has mean 0 and a.c.f. RXX(k) = ρ|k|, |ρ| < 1.

a) Determine the linear predictor of order 1 that minimizes the prediction error
variance. Calculate the prediction error variance.

b) Determine the linear predictor of order 2 that minimizes the prediction error
variance. Calculate the prediction error variance.

5.3 A time-discrete signal Xi with mean 0 and an a.c.f. satisfying RXX(1) = ρ ·RXX(0)
is to be coded with a linear order-1 predictor pi = a · X̂i−1. The prediction error is
uniformly quantized with stepsize ∆.

a) Determine the linear predictor which minimizes the variance of the prediction
error when the quantizer noise is taken into account. (Hint: Assume that
X̂i = Xi+ εi where εi is the quantization error, and that the quantization error
is uncorrelated with the signal.)

b) What will the variance of the prediction error be?

5.4 An audio mono signal is modelled as stationary zero mean time discrete gaussian
processXn. From a large set of data we have estimated the following auto correlation
function RXX(k) = E{XnXn+k}.

RXX(0) = 2.32, RXX(1) = 1.17, RXX(2) = −0.86, RXX(3) = −1.78

Design a linear predictive coder for the audio signal that gives a SNR of at least 37
dB at the data rate of 6 bits/sample.

5.5 An image is modelled as a stationary twodimensional normally distributed process
Xi,j (i and j are coordinates in the image) with the following estimated statistics

E{Xi,j} = 0

E{Xi,j ·Xk,l} = 0.92|i−k| · 0.95|j−l|

Construct a linear predictive coder that codes the image with a rate of at most 6
bits/pixel and gives a signal to noise ratio higher than 45 dB.
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6 Transform Coding

6.1 A zero-mean time discrete gaussian process Xn has the following estimated auto
correlation function RXX(k) = E{Xn ·Xn+k}:

RXX(0) = 4.63, RXX(1) = 2.34, RXX(2) = −1.72, RXX(3) = −3.55

We want to code the signal with a 4-dimensional Hadamard transform and Max
quantize it to give an average rate of 1 bit/sample.

Calculate the resulting SNR and compare it to the SNR we would get if we quantized
the signal directly without first transforming.

6.2 An audio signal is modelled as a time discrete stationary gaussian process Xn with
auto correlation function RXX(k) and mean 0.

RXX(k) = E{Xn ·Xn+k} = 0.91|k|

The signal is transform coded using a 3 point DCT. The transform components
are quantized uniformly and then coded by a memoryless arithmetic coder. The
stepsizes of the three quantizers are chosen so that the average rate is 4.5 bits/sample
and the average distortion is minimzed.

What is the resulting rate for each of the three transform components?

What is the resulting signal to noise ratio?

What signal to noise ratio would we get if we used a KLT instead of a DCT?

6.3 An image is modelled as a stationary twodimensional zero mean normally distributed
process Xi,j (i and j are coordinates in the image). From a large set of data, the
auto correlation function RXX(k, l) = E{Xi,j ·Xi+k,j+l} has been estimated as

RXX(0, 0) = 1.70, RXX(0, 1) = 1.58

RXX(1, 0) = 1.54, RXX(1, 1) = RXX(1,−1) = 1.52

We want to code the image by taking small blocks of size 2× 2 pixels and perform
a separable Hadamard transform of the blocks.

We want to code the blocks using Lloyd-Max quantization, giving an average rate
of 1.5 bits/pixel.

What is the bit allocation that minimizes the distortion?

What is the resulting signal-to-noise ratio (in dB) of the coder?
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6.4 A one-dimensional stationary gaussian process Xn is transform coded with a two-
point Karhunen-Loève transform. The resulting variances of the two transform
components are

σ2
0 = 5.85 ; σ2

1 = 0.15

a) The transform components are quantized uniformly and then entropy coded so
that the resulting average rate is 5 bits/sample.

Calculate the resulting signal-to-noise ratio (in dB), assuming that the bits are
distributed to minimize the average distortion.

b) We now want to apply predictive coding to Xn instead. Construct an optimal
(given the information you have) linear predictor for Xn and quantize the pre-
diction error so that the resulting bit-rate is the same as in a) above. What
signal-to-noise ratio is obtained?

6.5 A time-discrete signal is modelled as a stationary gaussian stochastic process Xn

with zero mean and a.c.f.
RXX(k) = 0.9|k|

The signal is to be transform coded at 2 bits/sample. At one’s disposition are
“transform units” T which as input take two in-samples (a, b) and produces two
transform components according to

{

c = 1√
2
(a+ b)

d = 1√
2
(a− b)

Two ways of combining the transform units are to be studied. In both cases four
consecutive samples are read in and four transform components are generated ac-
cording to the figure below. How much do the signal-to-ratio (in dB) increase by
using the components at B instead of A? The same Lloyd-Max quantization and bit
allocation strategy is assumed for both cases.

T
a

b

c

dT
a

b

c

d

T
a

b

c

d

❄
✲

✲

✲

✲

✲

✲

✲

✲

..................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................

A B
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6.6 An audio signal is modelled as a stationary, one-dimensional gaussian process Xn,

E {Xn } = 0

E {XnXm } = 2 · 0.85|n−m|

We now want to subband-split the audio signal and Lloyd-Max quantize so that the
resulting rate is 2 bits/sample.

✲

✲

✲

H1(z)

H0(z)

↓ 2

↓ 2

H1(z)

H0(z)

↓ 2

↓ 2 Q1

Q2

Q3

X

Y1

Y2

Y3

The filters which are used are H0(z) = 1√
2
(1 + z−1) and H1(z) = 1√

2
(1 − z−1),

i.e., the normalized sum and difference respectively. The symbol “↓ 2” stands for
down-sampling, i.e., every second sample is thrown.

The filters H0 och H1 are orthogonal, normalized and the input signal can be per-
fectly reconstructed from the down-sampled output.

a) Allocate bits to the quantizers Q1, Q2 and Q3 so that the rate requirement is
satisfied and the distortion is minimized!

b) Calculate the expected distortion and compare with the distortion if we used
Lloyd-Max quantization directly on the signal!
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6.7 An image is modelled as an twodimensional gaussian process Xi,j (i and j are
coordinates in the image) with the statistics

E{Xi,j} = 0

E{Xi,jXk,l} = 0.9
√

(i−k)2+(j−l)2/2

We want to code the image with a two-dimensional subband coder and Max quantize
to get an average rate of 2 bits/pixel.

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

H1v

H0v

H1h

H1h

H0h

H0h

↓ 4

↓ 4

↓ 4

↓ 4 Q1

Q2

Q3

Q4

X

Y1

Y2

Y3

Y4

The signal is first filtered vertically with the filtersH0v (lowpass) andH1v (highpass)
and thereafter horisontally with the filters H0h (lowpass) och H1h (highpass). The
filters are simple sum and difference filters, i.e.,

h0v [k, l] = (δ[k, l] + δ[k, l + 1])/
√
2

h1v [k, l] = (δ[k, l] − δ[k, l + 1])/
√
2

h0h[k, l] = (δ[k, l] + δ[k + 1, l])/
√
2

h1h[k, l] = (δ[k, l] − δ[k + 1, l])/
√
2

The symbol “↓ 4” means down-sampling by a factor of 4, i.e., only 1/4 of the samples
are kept after filtering.

Allocate bits to the four quantizers Q1, . . . , Q4 so that the average distortion is
minimized. Calculate the resulting distortion.
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Part II

Solutions

1.1 H(X) = −∑4
i=1 PX(i) · log PX(i) = −4 · 1

4 · log 1
4 = 2

1.2 H(Y ) = −∑4
i=1 PY (i) · log PY (i) = −1

2 · log 1
2 − 1

4 · log 1
4 − 2 · 1

8 · log 1
8 = 1.75

1.3 a) Independence gives PXY (x, y) = PX(x) · PY (y).

PXY y

1 2 3 4

1 0.125 0.0625 0.03125 0.03125

x 2 0.125 0.0625 0.03125 0.03125

3 0.125 0.0625 0.03125 0.03125

4 0.125 0.0625 0.03125 0.03125

b) H(X,Y ) = 3.75

c) H(X,Y ) = −
∑

i

∑

j

PXY (i, j) log PXY (i, j)

= −
∑

i

∑

j

PX(i)PY (j)(log PX(i) + logPY (j))

= −
∑

i





∑

j

PY (j)



PX(i) log PX(i)−
∑

j

(

∑

i

PX(i)

)

PY (j) log PY (j)

= H(X) +H(Y )

d) Consider (X1, . . . ,Xn−1) as separate random variable and construct an induc-
tion proof.

1.4 a) PZ = {1
4 ,

1
4 ,

1
4 ,

1
4} gives maximal entropy.

b) PZ = {1, 0, 0, 0} gives H(Z) = 0. Since entropy is non-negative this is minimal.
The solution is not unique.

1.5 a) Use

∞
∑

i=0

qi =
1

1− q
, |q| < 1.

b) H(U) =
Hb(q)

1− q
=

−q log q − (1− q) log(1− q)

1− q
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Use
∞
∑

i=0

iqi =
q

(1− q)2
, |q| < 1.

c) E{U} =
q

1− q

1.6 a) H + 1

b) H + p

c) 2H

d) nH

1.7 a) Let (B8, B4, B2, B1) be four random variables describing the bits. Then the
entropies will be

H(B8) = −1

3
· log 1

3
− 2

3
· log 2

3
≈ 0.9183

H(B4) = −1

3
· log 1

3
− 2

3
· log 2

3
≈ 0.9183

H(B2) = −1

2
· log 1

2
− 1

2
· log 1

2
= 1

H(B1) = −1

2
· log 1

2
− 1

2
· log 1

2
= 1

b)
H(X) = log 12 ≈ 3.5850

Note that this is smaller than the sum of the entropies for the different bits,
since the bits aren’t independent of each other.

1.8 The transition matrix P of the source is

P =











0.8 0.1 0.1

0.5 0.5 0

0.5 0 0.5











The stationary distribution w̄ = (w0, w1, w2) is given by the equation system
w̄ = w̄ · P . Replace one of the equations (any one will do) with the equation
w0 + w1 + w2 = 1 and solve the system. This gives the solution

w̄ =
1

7
(5, 1, 1) ≈ (0.714, 0.143, 0.143)

1.9 a) H(Xi) = −5
7 · log 5

7 − 2 · 1
7 · log 1

7 ≈ 1.1488 [bit/sym].
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b) The block probabilities are given by

symbol pair probability

00 5/7 · 0.8 = 8/14

01 5/7 · 0.1 = 1/14

02 5/7 · 0.1 = 1/14

10 1/7 · 0.5 = 1/14

11 1/7 · 0.5 = 1/14

12 0

20 1/7 · 0.5 = 1/14

21 0

22 1/7 · 0.5 = 1/14

H(Xi,Xi+1) = − 8
14 · log 8

14 − 6 · 1
14 · log 1

14 ≈ 2.0931 [bits/pair]. (→ 1.0465
[bits/symbol]). This is less than two times the memoryless entropy.

c) According to the chain rule:

H(Xi+1 |Xi) = H(Xi,Xi+1)−H(Xi) ≈ 0.9442

1.10 a) r0 =
1

1− q0
and r1 =

1

1− q1
.

b) H0 = r0Hb(q0) and H1 = r1Hb(q1).

c) H ≤ H0 +H1

r0 + r1

A Markov source of order 1 with P =





q0 1− q0

1− q1 q1



 could be the source

that generated these sequences.

There can be no other source generating these run-lengths and at the same time
have a lower source-symbol entropy-rate. One way to realize this is to think in
terms of an optimal entropy-code of the run-lengths. This simply is the best we
can do, since there are no more dependancies to exploit. So the bound is the
real entropy-rate.

2.1 Yes, since Kraft’s inequality is fulfilled:

8
∑

i=1

2−li =
53

64
< 1

You can of course show this by constructing a prefix code too.
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2.2 Since the probabilities are dyadic, it is possible to construct a code with the code-
word lengths li = logP (i) = i. This code will have a rate that is equal to the
entropy of the source and will thus be optimal.

. .

1
2

3
4

R = 2 [bits/symbol].

2.3 a) −0.6 · log 0.6− 0.3 · log 0.3 − 0.1 · log 0.1 ≈ 1.2955

b) Codeword lengths and an example of codewords:

symbol length codeword

x 1 0

y 2 10

z 2 11

The mean codeword length is 1.4 bits/codeword and the average rate is 1.4
bits/symbol.

c) Codeword lengths (not unique for this distribution) and an example of code-
words:

symbols length codeword

xx 1 0

xy 3 100

xz 4 1100

yx 3 101

yy 4 1110

yz 5 11110

zx 4 1101

zy 6 111110

zz 6 111111

The mean codeword length is 2.67 bits/codeword and the average rate is 1.335
bits/symbol.

2.4 The stationary distribution of the source is P (a) = P (b) = 0.5. This can easily be
seen since the source is symmetric. You can of course also find this by solving the
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equation system






P (a) = 0.9 · P (a) + 0.1 · P (b)

P (a) + P (b) = 1

The probabilities of pairs of symbols is given by P (xi, xi+1) = P (xi) · P (xi+1|xi),
which gives the probabilities {0.45, 0.05, 0.05, 0.45}
The probabilities for triples is given by P (xi, xi+1, xi+2) = P (xi) · P (xi+1|xi) ·
P (xi+2|xi+1), which gives the probabilities {0.405, 0.045, 0.005, 0.045, 0.045, 0.005,
0.045, 0.405}
The code trees for the two codes look like

aa
bb

ab ba

l̄ = 1.65 ⇒ R =
l̄

2
= 0.825

l̄ = 2.04 ⇒ R =
l̄

3
= 0.68

It is better to code three symbols with each codeword.

2.5 a) P (r) = pr−1 · (1− p)

b) r̄ =

∞
∑

r=1

r · (1− p) · pr−1 =
1

1− p
=

1

0.1
= 10 [symbols/run]

c) H(Y ) = −
∞
∑

r=1

(1− p) · pr−1 · log((1− p) · pr−1)

= −(1− p) · log(1− p) ·
∞
∑

r=1

pr−1 − (1− p) · log p ·
∞
∑

r=1

(r − 1) · pr−1

= −(1− p) · 1

1− p
· log(1− p)− (1− p) · p

(1− p)2
· log p

=
Hb(p)

1− p
≈ 4.690 [bits/run]

d)
H(Y )

r̄
= Hb(p) ≈ 0.4690 [bits/symbol]

We would of course have gotten the same answer by calculating the entropy
rate of the original source directly.

2.6 a) l̄ = E { codeword length/run } =

4
15
∑

r=1

(1− p)pr−1 + 8
30
∑

r=16

(1− p)pr−1 + 12
45
∑

r=31

(1− p)pr−1 + . . . =
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4
∞
∑

r=1

(1− p)pr−1 + 4p15
∞
∑

r=1

(1− p)pr−1 + 4p30
∞
∑

r=1

(1− p)pr−1 + . . . =

4
∞
∑

r=1

(1− p)pr−1 ·
∞
∑

i=0

p15i = 4 · 1 · 1

1− p15
≈ 5.0371 [bits/run]

From problem 2.5 we know that r̄ = 10 [symbols/run], thus the rate is l̄
r̄ ≈

0.50371 [bits/symbol]. Compare this to the entropy rate of the source.

b) Just as in a) we get

l̄ = 5 · 1 · 1

1− p31
≈ 5.1983 [bits/run]

and the rate ≈ 0.51983 [bits/symbol].

2.7 a) The theoretical limit is given by the entropy. The best model we can use, given
the information we have, is an order 1 Markov model. In the text area this
looks like

B W

0.5

0.1

0.5 0.9

The stationary probabilities for this source is wB = 1
6 and wW = 5

6 and the
entropy rate when we’re in a text area is therefore

Ht = wB ·Hb(0.5) + wW ·Hb(0.9) ≈ 0.5575

For the picture areas, the entropy rate is similarly

Hp ≈ 0.7857

The total entropy rate for the source is therefore

H =
4

5
Ht +

1

5
Hp ≈ 0.60313

This is the best estimate we can make, the true entropy rate of the source
might be lower than this number, if the memory is longer than one symbol as
we assumed.

b) The wanted bitrate can be achieved by coding blocks of 3 symbols. The prob-
abilities of the 8 different blocks are given by

P (xi, xi+1, xi+2) = P (xi) · P (xi+1|xi) · P (xi+2|xi+1)

where the first probability on the right hand side is the stationary probabilities
calculated in a), and de conditioned probabilities are the ones given in the
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problem. The eight probabilities are

P =
1

120
{1 5 5 5 5 9 9 81}

The Huffman code is constructed using the Huffman algorithm, giving an aver-
age codeword length of 0.625 bits/symbol.

2.8 a) When allowing codeword lengths to grow it is always possible to achieve a
codeword mean length arbitrary close to the entropy rate of the source. The
entropy rate of a Markov source is given by the conditional entropy,

H(Sn+1|Sn) = wAH(Sn+1|Sn = A) + wBH(Sn+1|Sn = B) + wCH(Sn+1|Sn = C)
+ wDH(Sn+1|Sn = D)

where wA etc. denote the stationary probabilities of the states. The stationary
probabilities can be calculated by solving the following underdecided equation
system together with the fact that the probabilities should add to one:

(wA wB wC wD) ·

















0 0.5 0 0.5

0 0.2 0 0.8

0.1 0 0.9 0

0 0 0.7 0.3

















= (wA wB wC wD)

⇒ (wA wB wC wD) =
1

731
(56 35 560 80)

and the conditional entropy,

H(Sn+1|Sn) = 1
731(56 ·Hb(0.5) + 35 ·Hb(0.2) + 560 ·Hb(0.1) + 80 ·Hb(0.3)) ≈

0.5669.

b) Using the stationary probabilities we get the following suggestion for a code in
the memoryless case:

symbol probability codeword length

A 56/731 110 3

B 35/731 111 3

C 560/731 0 1

D 80/731 10 2

yielding rate and mean codeword length R1 = l̄1 =
993

731
≈ 1.3584 bits/symbol

When extending the source to two symbols we need the stationary probabilities
for the possible sequences of two subsequent symbols. These can easily be calcu-
lated using P (xi, xi+1) = P (xi) · P (xi+1|xi) where the conditional probabilities
are taken from the graph. The Huffman algorithm can result in the following
optimal code:
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symbols probability codeword length

AB 28/731 1010 4

AD 28/731 1110 4

BB 7/731 10110 5

BD 28/731 1111 4

CA 56/731 100 3

CC 504/731 0 1

DC 56/731 110 3

DD 24/731 10110 5

With mean codeword length l̄2 =
1331

731
≈ 1.8208 bits/codeword and rate

R2 =
l̄2
2

≈ 0.9104 bits/symbol.

2.9 a) codeword for 31:
The corresponding interval will be [0.8, 0.92). At least ⌈− log2(0.92− 0.8)⌉ = 4
bits will be required to specify the interval. The smallest 4 bit binary number
larger than 0.8 is (0.1101)2 = 0.8125. To see if 4 bits will be enough, check
the number (0.11011111 . . .)2 = (0.1110)2 = 0.875 < 0.92. Thus, 4 bits will be
enough, and the codeword is 1101.

codeword for 12:
The interval is [0.36, 0.48). The same kind of reasoning as above gives that the
codeword is 0110.

b) codeword for 3112:
The interval is [0.8432, 0.8576) which leads us to the codeword 1101100

2.10 If we place the symbol 1 closest to 0, the resulting interval is [0.185125 0.18934375),
of size 0.00421875.

The number of bits in the codeword is at least

⌈− log2 0.00421875⌉ = 8

We might need one more bit.

Alternative 1: The smallest 8 bit number in the interval is (0.00110000)2 = 0.1875.
Unfortunately there are numbers starting with these 8 bits that are outside of the
interval. This means that we must use 9 bits: (0.001011111)2 = 0.185546875. The
codeword is 001011111.

Alternative 2: The mid point of the interval 0.187234375 = (0.001011111110 . . .)2.
Truncate to the first 9 bits to get the codeword: 001011111.
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2.11 The conditional probabilities can be calculated by using P (xi, xi+1) = P (xi) ·
P (xi+1|xi) where P (xi) can befound as the marginal probabilities:

P (1) = P (1, 1) + P (1, 2) = 2/7, P (2) = P (2, 1) + P (2, 2) = 5/7

The interval corresponding to the given sequence is [0.424, 0.488) with interval size
0.064.

Next express 0.424 in binary: 0.424 = 0.01101100 . . .

Since ⌈− log 0.064⌉ = 4 we retrieve our first codeword candidate (0.)0111 = 0.4375.
The largest number starting with these bits is 0.011111111 . . . = 0.1 which is equal
to 0.5 in base 10. Since this number is larger than the upper limit 0.488 we need
one more bit for a correct codeword. Hence the final codeword will be 01110

2.12 a) Assuming that the order of the different colours is the same all the time, the
interval will be [0.05 , 0.07538). (If you changed the colour order, you should
at least get the same interval length.)

b) green, green.

2.13 Assuming that the rightmost position in the search buffer is denoted by 0, we get
the codewords:

(offset, length, new symbol) Binary codeword

(0,0,a) 0000 0000 0

(0,0,b) 0000 0000 1

(1,2,b) 0001 0010 1

(2,1,a) 0010 0001 0

(6,5,b) 0110 0101 1

(8,6,a) 1000 0110 0

(0,4,b) 0000 0100 1

. . . . . .

2.14 The coded sequence of pairs <index, new symbol> is:

< 0, a > < 0, b > < 1, b > < 2, a > < 1, a > < 4, b > < 2, b >

< 4, a > < 3, a > < 5, a > < 5, b > < 3, b > . . .

If we assume that the dictionary has the size 16, we will need 4+1 bits to code each
pair.

After coding, the dictionary looks like:
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index sequence index sequence index sequence index sequence

0 - 4 ba 8 baa 12 abb

1 a 5 aa 9 aba

2 b 6 bab 10 aaa

3 ab 7 bb 11 aab

2.15 The coded sequence of <index> is:

< 0 > < 1 > < 2 > < 3 > < 0 > < 2 > < 4 > < 1 >

< 5 > < 7 > < 6 > < 12 > < 3 > < 9 > . . .

If we assume that the dictionary has the size 16, we will need 4 bits to code each
index.

After coding, the dictionary looks like:

index sequence index sequence index sequence index sequence

0 a 4 abb 8 abbb 12 aaa

1 b 5 baa 9 bb 13 aaab

2 ab 6 aa 10 baaa 14 bab

3 ba 7 aba 11 abaa 15 bba

2.16 The decoded sequence is
dadadadebbbadebbba . . .

and the code book looks like

index sequence index sequence index sequence index sequence

0 a 4 e 8 dad 12 bba

1 b 5 f 9 dade 13 ade

2 c 6 da 10 eb 14 ebb

3 d 7 ad 11 bb 15 bba∗

3.1 R(D) =
B

ln 2



ln
1

1−
√

1− D
σ2

−
√

1− D

σ2





3.2 R(D) =







B log 2σ2
√
2

3D ; 0 ≤ D ≤ 2σ2

3

1
2B log 2σ2

3D−σ2 ; 2σ2

3 ≤ D ≤ σ2
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3.3 The theoretical optimum is given by the Rate-Distortion function, R(D) which for
a time-continuous gaussian process with spectral density Φ(f) can be found from







D(γ) =
∫∞
−∞min[Φ(f), γ]df

R(γ) =
∫∞
−∞max[0, 12 log Φ(f)

γ ]df

W (t) can be ignored for γ ≥ max[ΦW (f)] = 0.25. We get the lowest distortion (and
thus the largest SNR) when γ = 0.25.

D(0.25) =

∫ ∞

−∞
min[Φ(f), 0.25]df = 2 · 0.25 · 5000 + 0.25 · 10000 = 5000

The variance σ2
X is given by

σ2
X =

∫ ∞

−∞
ΦX(f)df = 2 · 0.25 · 5000 + 1 · 10000 = 12500

The resulting SNR is

10 · log10
σ2
X

D
= 10 · log10

12500

5000
≈ 3.98 [dB]

We get the lowest SNR when we ignore the signal completely, which gives D = σ2
X

and SNR 0 dB.

3.4 a) Assume that the quantization noise and the signal are uncorrelated. The total
distortion is the sum of the quantization distortion and the distortion from the
LP-filtering prior to sampling

DLP = 2

∫ ∞

fs/2
Φ(f)df =

1

A

∫ ∞

fs/2
e−f/Adf = e−fs/2A

Dquant ≈ σ2 · π
√
3

2
· 2−2R

σ2 = 2

∫ fs/2

0
Φ(f)df = 1− e−fs/2A

Dtot = DLP +Dquant

Rc = R · fs = 28800 ⇒ fs =
28800

R
⇒ Dtot ≈ e−48/R + (1− e−48/R)

π
√
3

2
2−2R

If we restrict ourselves to integer solutions, Dtot will be minimal for R = 6.

R = 6 ⇒ Dtot ≈ 9.995 · 10−4 ⇒ fs = 4800 [Hz]

SNR = 10 · log10
σ2
Z

Dtot
≈ 10 · log10

1

9.995 · 10−4
≈ 30.0 [dB]
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b) The theoretical bound is given by the rate-distortion function. Let fγ be the
frequency where Φ(fγ) = γ

R(γ) = 2

∫ fγ

0

1

2
log

Φ(f)

γ
df =

/

γ =
1

2A
e−fγ/A

/

=

=

∫ fγ

0
log e

fγ−f

A df =
1

ln 2

1

A

∫ fγ

0
(fγ − f)df =

=
f2
γ

2A ln 2
= 28800

⇒ fγ ≈ 3461 ⇒ γ ≈ 1.6283 · 10−8

D(γ) = 2fγγ + 2

∫ ∞

fγ

Φ(f)df = 2fγγ + e−fγ/A ≈ 1.225 · 10−4

SNR ≈ 10 · log10
1

1.225 · 10−4
≈ 39.1 [dB]

4.1 Three reconstruction points (y1, y2 and y3) and four decision boundaries (b0, b1,
b2 and b3). Since the probability density function is symmetric around the origin,
we have y1 = −y3 and y2 = 0. The optimal decision boundaries should be located
halfway between the reconstruction points (except the two end boundaries which
should be located at the endpoints of the distribution). We thus get b0 = −T ,
b1 =

y1+y2
2 = −y3

2 , b2 =
y2+y3

2 = y3
2 and b3 = T .

What is left is to find y3. It should be located in the the centroid of its corresponding
decision region, ie

y3 =

∫ b3
b2

x · f(x) dx
∫ b3
b2

f(x) dx

We have
∫ b3

b2

f(x) dx =

∫ T

y3/2

1

2T
dx =

1

2T

(

T − y3
2

)

and
∫ b3

b2

x · f(x) dx =

∫ ∞

y3/2
x · 1

2T
dx =

1

4T

(

T 2 −
(y3
2

)2
)

which gives us

y3 =
T + y3

2

2
=⇒ y3 =

2T

3

Reconstruction points: y1 = −2T
3 , y2 = 0, y3 =

2T
3 .

Decision boundaries: b0 = −T , b1 = −T
3 , b2 =

T
3 , b3 = T .

Note that the Lloyd-Max quantizer for a uniform distribution is a uniform quantizer.
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The distortion is given by

D =

∫ −T/3

−T
(x+

2T

3
)2

1

2T
dx+

∫ T/3

−T/3
x2

1

2T
dx+

∫ T

T/3
(x− 2T

3
)2

1

2T
dx =

=
3

2T

∫ T/3

−T/3
x2 dx =

3

2T

[

x3

3

]T/3

−T/3

=
T 2

27

4.2 We start by calculating the variance of the distribution:

σ2 =

∫ ∞

−∞
x2 · f(x) dx = 2

∫ ∞

0
x2 · 1

2a
e−x/a dx =

=
[

−x2e−x/a
]∞

0
+

∫ ∞

0
2xe−x/a dx =

=
[

−2axe−x/a
]∞

0
+

∫ ∞

0
2ae−x/a dx =

[

−2a2e−x/a
]∞

0
= 2a2

a) Two reconstruction points (y1 and y2) and three decision boundaries (b0, b1 and
b2). Since the distribution is symmetric around the origin, we have y1 = −y2.
The optimal decision boundaries should be located halfway between the recon-
struction points (except for the two end boundaries, which should be located at
the endpoints of the distribution). We thus get b0 = −∞, b1 = y1+y2

2 = 0 and
b2 = ∞.

What is left is to find y2. It should be located in the centroid of its corresponding
decision region, ie

y2 =

∫ b2
b1

x · f(x) dx
∫ b2
b1

f(x) dx

We have

∫ b2

b1

f(x) dx =

∫ ∞

0

1

2a
e−x/a dx =

[

−1

2
e−x/a

]∞

0

=
1

2

and

∫ b2

b1

x · f(x) dx =

∫ ∞

0
x · 1

2a
e−x/a dx =

[

−x

2
e−x/a

]∞

0
+

∫ ∞

0

1

2
e−x/a dx =

=
[

−a

2
e−x/a

]∞

0
=

a

2

We thus get the the reconstruction points y1 = −a = − σ√
2
and y2 = a = σ√

2
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The distortion is given by

D =

∫ 0

−∞
(x+ a)2 f(x) dx+

∫ ∞

0
(x− a)2 f(x) dx =

=

∫ ∞

−∞
x2 f(x) dx+ a2

∫ ∞

−∞
f(x) dx− 4a

∫ ∞

0
xf(x) dx =

= 2a2 + a2 − 4a · a
2
= a2 =

1

2
σ2

Compare to the formula collection!

b) Three reconstruction points (y1, y2 and y3) and four decision boundaries (b0,
b1, b2 and b3). Since the distribution is symmetric around the origin, we have
y1 = −y3 and y2 = 0. The optimal decision boundaries should be located
halfway between the reconstruction points (except for the two end boundaries,
which should be located at the endpoints of the distribution). We thus get
b0 = −∞, b1 =

y1+y2
2 = −y3

2 , b2 =
y2+y3

2 = y3
2 and b3 = ∞.

What is left is to find y3. It should be located in the centroid of its corresponding
decision region, ie

y3 =

∫ b3
b2

x · f(x) dx
∫ b3
b2

f(x) dx

We have
∫ b3

b2

f(x) dx =

∫ ∞

y3/2
f(x) dx =

[

−1

2
e−x/a

]∞

y3/2

=
1

2
e−y3/2a

and
∫ b3

b2

x · f(x) dx =

∫ ∞

y3/2
x · 1

2a
e−x/a dx =

[

−x

2
e−x/a

]∞

y3/2
+

∫ ∞

y3/2

1

2
e−x/a dx =

=
y3
4
e−y3/2a +

[

−a

2
e−x/a

]∞

y3/2
=
(y3
4

+
a

2

)

· e−y3/2a

which gives us

y3 =
y3
2

+ a =⇒ y3 = 2a

Reconstruction points: y1 = −2a, y2 = 0, y3 = 2a.

Decision boundaries: b0 = −∞, b1 = −a, b2 = a, b3 = ∞.

The distortion is given by

D =

∫ −a

−∞
(x+ 2a)2 f(x) dx+

∫ a

−a
x2 f(x) dx+

∫ ∞

a
(x− 2a)2 f(x) dx =

=

∫ ∞

−∞
x2 f(x) dx+ 8a2

∫ ∞

a
f(x) dx− 8a

∫ ∞

a
xf(x) dx =

= 2a2 + 4a2e−1 − 8a2e−1 = 2a2(1 − 2e−1) = σ2(1− 2e−1) ≈ 0.2642 · σ2
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4.3 Sample at double the band-width, I.e., 30kHz. This will lead to that no distortion
at the receiver is induced by the sampling step. (cut-off filter is assumed to be
ideal.) Assume that the quantizer noise is uncorrelated with the signal itself. Then
the p.s.d. of the noise will just add to the signal p.s.d., both before and after the
pulse-modulation. Since the variance of a signal doesn’t scale when using ideal
pulse-modulation (search your favorite signal theory literature.) the distortion will
be only depend on the particular quantizer used. The natural choice of quantizer
for a uniform distribution is of course a uniform quantizer.

Assume that the signal is uniformly distributed between −T och T .

The variance for the signal is then σ2 = T 2

3 .

Let the number of quantization steps be N = 2R.

The step length of the quantizer is ∆ = 2T
N = 2T

2R

The distortion for uniform quantization of a uniform distribution is D = ∆2

12 , which
gives us

D =
∆2

12
=

(2T )2

22R · 12 =
T 2

22R · 3 =
σ2

22R

which in turn gives us

R =
1

2
log2

σ2

D

In order to achive an SNR of at least 30 dB we require σ2

D ≥ 103 which gives (if we
limit the rate to integers) that R ≥ 5 [bits/sample] which corresponds to a rate of
at least 150 kbit/s.

4.4 a) D ≈ 5 · 0.3634 = 1.817

b) Since the two quantization levels will be equally probable, H = 1 [bit/symbol]

c)
1

2
log

σ2

D
≈ 1

2
log

5

1.817
≈ 0.73 [bit/symbol]

4.5 Assuming that no entropy coding is done, ie the varible is quantized to 22 = 4 levels,
D ≥ 0.1175 · σ2

4.6 Call the quantized variable Y and the reconstructed variable X̂ . Assume that the
entropy coder is perfect, i.e., the rate R is equal to the entropy H(Y ). If the
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quantization step of the quantizer is ∆ the distortion is then D ≈ ∆2/12

R = H(Y ) = −
∑

i

p(yi) · log p(yi) ≈

≈ −
∑

i

∆fX(x̂i) · log ∆fX(x̂i) ≈

≈ − log∆−
∫ ∞

−∞
fX(x) log fX(x)dx =

= − log∆−
∫ ∞

−∞

1√
2πσ

e−x2/2σ2 · log
(

1√
2πσ

e−x2/2σ2

)

dx =

= − log∆ + log
√
2πσ +

1

2
log e =

=
1

2
log

2πσ2e

∆2
≈ 1

2
log

πeσ2

6D
=

=
1

2
log

σ2

D
+

1

2
log

πe

6
≈ R(D) + 0.255

The lazy solution is to use the formula collection directly.

4.7 Call the quantized variable Y and the reconstructed variable X̂. Assume that the
entropy coder is perfect, i.e., the rate R is equal to the entropy H(Y ). If the
quantization step of the quantizer is ∆ the distortion is then D ≈ ∆2/12

R = H(Y ) = −
∑

i

p(yi) · log p(yi) ≈

≈ −
∑

i

∆fX(x̂i) · log ∆fX(x̂i) ≈

≈ − log∆−
∫ ∞

−∞
fX(x) log fX(x)dx =

= − log∆− 2

∫ ∞

0

1√
2σ

e−
√
2x/σ · log

(

1√
2σ

e−
√
2x/σ

)

dx =

= − log∆ + log
√
2σ + log e =

=
1

2
log

2e2σ2

∆2
≈ 1

2
log

e2σ2

6D

which gives us

D ≈ e2

6
· σ2 · 2−2R

4.8 Call the quantized variable Y and the reconstructed variable X̂. Assume that the
entropy coder is perfect, i.e., the rate R is equal to the entropy H(Y ). The variance
of X is σ2 = a2/6. If the quantization step of the quantizer is ∆ the distortion is
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then D = ∆2/12

R = H(Y ) = −
∑

i

p(yi) · log p(yi) ≈

≈ −
∑

i

∆fX(x̂i) · log∆fX(x̂i) ≈

≈ − log ∆−
∫ a

−a
fX(x) log fX(x)dx =

= − log ∆− 2

∫ a

0

1

a
(1− x

a
) · log

(

1

a
(1− x

a
)

)

dx =

= − log ∆− log
1

a
+

1

2
log e =

= −1

2
log∆2 − 1

2
log

1

a2
+

1

2
log e =

1

2
log

a2e

∆2
=

=
1

2
log

σ2e

2D
⇐⇒ D ≈ e

2
· σ2 · 2−2R

4.9 The optimal choice of step size is according to the formula collection ∆(x) =
c(f(x))−1/3. When putting this into

{

D ≈ 1
12

∫∞
−∞∆2(x)f(x)dx

R ≈ log
∫∞
−∞

dx
∆(x)

we get the parametric form:

{

D ≈ c2

12

∫∞
−∞(f(x))1/3dx

R ≈ log 1
c

∫∞
−∞(f(x))1/3dx

Simple calculations yield
∫∞
−∞(f(x))1/3dx = 3(

√
2σ)2/3 for the laplacian distribution

and hence we can write

D =
c2(

√
2σ)2/3

4
⇒ c2 =

4D

(
√
2σ)2/3

and we get

R =
1

2
log

(
√
2σ)2/3

4D
32(

√
2σ)4/3 =

1

2
log

9

2

σ2

D

which gives us:

D ≈ 9

2
· σ2 · 2−2R

4.10 First we need to make some assumptions and approximations. 16 bits/sample is
obviously very fine quantization, so we assume that the distribution is constant in
each quantization interval. Furthermore, since a = 6σ we can ignore the probability
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that the quantizer is overloaded (it will be roughly 2 · 10−9). These approximations

will give that the distortion D ≈ ∆2

12 . The number of levels in the quantizer is

M = 216 =
2a

∆

leading to

DU ≈ ∆2

12
=

a2

3
2−2·16 = 12 · σ2 · 2−2·16

If we use Max quantization instead of uniform quantization, the distortion will be

DM ≈ π
√
3

2
· σ2 · 2−2·16

The difference in SNR is

10 · log10
σ2

DM
− 10 · log10

σ2

DU
= 10 · log10

DU

DM
≈

≈ 10 · log10
24

π
√
3
≈ 6.4 [dB]

Thus, by using Max quantization instead of uniform quantization we will gain 6.4
dB in SNR.

4.11 a) MSE is approximately 438.

b) Each reconstruction point should be moved to the arithmetic mean of the train-
ing data within its region.

A should be placed in (−130
3 ,−30), B in (203 ,−10

3 ), C in (−40
3 ,

40
3 ) and D in

(31.25, 38.75). This will result in a new MSE of approximately 340.

c) To minimize the distorsion each training data point should be rounded to the
nearest reconstruction point. This implies that the decision boundaries should
be straight lines halfway between the reconstruction points. The new MSE will
be approximately 321.

4.12 a) Approximately 2.63 ·1018 years. The size of the codebook will be immense since
1.5 ·8 ·8 = 96 bits will be used to address it. Generally, if the size of the vector is
L pixels, the time required to code one image is 10242

L · 21.5·L ·L = 21.5·L+20 [ns].

b) Six pixels/block.

c) Ten pixels/block.

5.1 a) pi = 0.9 ·Xi−1, σ2
d = 0.19.

b) pi =
27

19
Xi−1 −

11

19
Xi−2, σ2

d ≈ 0.1263
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5.2 a) pi = ρ ·Xi−1, σ2
d = 1− ρ2.

b) pi = ρ ·Xi−1 + 0 ·Xi−2, σ2
d = 1− ρ2.

i.e., the order-2 predictor does not improve the situation. Will any higher order
linear predictor work better?

5.3 a) a = ρ · RXX(0)

RXX0 + E { ε2 } ≈ ρ · RXX(0)

RXX(0) + ∆2

12

b) (1 + a2)RXX(0) + a2E
{

ε2
}

− 2aρRXX (0)

5.4 The problem can be solved by using an order 2 linear predictor. A predictor of
order 1 won’t achieve the wanted SNR.

Quantization to 6 bits/sample can be seen as fine quantization ⇒ assume that the
predictor works with original samples:

pn = a1 · X̂n−1 + a2 · X̂n−2 ≈ a1 ·Xn−1 + a2 ·Xn−2

The prediction error variance is

σ2
d = E{(Xn − pn)

2} ≈ E{(Xn − a1 ·Xn−1 − a2 ·Xn−2)
2}

The predictor that minimizes σ2
d is given by

A =





a1

a2



 = R
−1 ·P

where

R =





RXX(0) RXX(1)

RXX(1) RXX(0)



 and P =





RXX(1)

RXX(2)





This gives the optimal predictor A and the prediction error variance σ2
d

A ≈





0.9270

−0.8382



 σ2
d ≈ 0.5145

If the quantizer we use is a Max quantizer, the distortion will be

D ≈ π
√
3

2
· σ2

d · 2−2·6 ≈ 0.00034177

Signal to noise ratio:

10 · log10
σ2
X

D
= 10 · log10

RXX(0)

D
≈ 38.3 [dB]
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5.5 One suitable predictor (there are several) is

pi,j = a1 · X̂i−1,j + a2 · X̂i,j−1 ≈ a1 ·Xi−1,j + a2 ·Xi,j−1

Because of the fine quantization we can do the calculations as if the predictor worked
using the original signal, ie we can disregard the effect of the quantization on the
prediction. The variance of the prediction error:

σ2
d = E{(Xi,j − pi,j)

2} ≈ E{(Xi,j − a1Xi−1,j − a2Xi,j−1)
2}

a1 and a2 that minimize σ2
d are given by





1 0.95 · 0.92
0.95 · 0.92 1









a1

a2



 =





0.92

0.95





⇒





a1

a2



 ≈





0.3799

0.6180





⇒ σ2
d ≈ 0.0634

We use uniform quantization followed by entropy coding to the rate 6 bits/pixel,
which gives us the distortion

D ≈ σ2
d

πe

6
2−2·6 ≈ 0.000022039

SNR = 10 · log10
σ2
X

D
≈ 46.6 [dB]

(We can also reach 45 dB with the rate 5.74 bits/pixel.)

6.1 Transform matrix (one basis function per row)

A =
1

2

















1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1
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Correlation matrix for transform components, variances in the diagonal

Rθ = ARXA
T = A ·

















4.63 2.34 −1.72 −3.55

2.34 4.63 2.34 −1.72

−1.72 2.34 4.63 2.34

−3.55 −1.72 2.34 4.63

















·AT

≈

















4.645 0 0 −2.945

0 1.175 2.945 0

0 2.945 9.295 0

−2.945 0 0 3.405

















Using our favourite bit allocation algorithm, we find that that the first and fourth
components should be quantized with 1 bit each, the second component with no
bits and the third with 2 bits, giving an average rate of 1 bit/sample. The resulting
distortion is

DT ≈ 0.3634 · 4.645 + 1 · 1.175 + 0.1175 · 9.295 + 0.3634 · 3.405
4

≈ 1.2981

giving an SNR of

SNRT ≈ 10 · log10
4.63

1.2981
≈ 5.52 [dB]

Without transform, we get the distortion

DQ ≈ 0.3634 · 4.63 ≈ 1.6825

which gives the SNR

SNRQ ≈ 10 · log10
4.63

1.6825
≈ 4.40 [dB]

The transform coding gain is 1.12 dB.

6.2 The transform matrix (basis vectors in the rows) of a 3 point DCT is

A =

√

2

3











1/
√
2 1/

√
2 1/

√
2

√
3/2 0 −

√
3/2

1/2 −1 1/2











=











1/
√
3 1/

√
3 1/

√
3

1/
√
2 0 −1/

√
2

1/
√
6 −2/

√
6 1/

√
6
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Variances of the three transform components:

σ2
0 = E{θ20} =

1

3
E{(X0 +X1 +X2)

2} =

=
1

3
(3RXX(0) + 4RXX(1) + 2RXX(2)) = 2.7654

σ2
1 = E{θ21} =

1

2
E{(X0 −X2)

2} =

=
1

2
(2RXX(0)− 2RXX(2)) = 0.1719

σ2
2 = E{θ22} =

1

6
E{(X0 − 2X1 +X2)

2} =

=
1

6
(6RXX(0)− 8RXX(1) + 2RXX(2)) = 0.0627

Alternatively we can calculate the variances as the diagonal elements of A ·RX ·AT ,
where

RX =











1 0.91 0.8281

0.91 1 0.91

0.8281 0.91 1











The desired rate is high enough for us to use the fine quantization approximations
for optimal bit allocation, ie

Ri = R+
1

2
log2

σ2
i

(σ2
0 · σ2

1 · σ2
2)

1/3

which gives us

R0 ≈ 6.08

R1 ≈ 4.07

R2 ≈ 3.35

Fractional rates are allowed, since we are using source coding.

Assuming that the arithmetic coder is a perfect source coder, we get the average
distortion

D ≈ πe

6
· (σ2

0 · σ2
1 · σ2

2)
1/3 · 2−2·4.5 ≈ 0.0008619

The signal to noise ratio is

10 · log10
σ2
X

D
= 10 · log10

1

D
≈ 30.65 dB

If we use a KLT instead, we get the distortion

DK ≈ πe

6
· det(RX)1/3 · 2−2·4.5 ≈ 0.0008594
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and the signal to noise ratio

10 · log10
1

DK
≈ 30.66 dB

As we can see, the gain from using a KLT instead of a DCT is marginal.

6.3 The two-point Hadamard transform is given by

H2 =
1√
2





1 1

1 −1





Applying this transform separably on a block of size 2× 2 pixels is equivalent to to
applying the transform

A =
1

2

















1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

















to vectors like this

x =

















Xi,j

Xi,j+1

Xi+1,j

Xi+1,j+1

















, θ = A · x

The variances of the four transform components are

σ2
0 = 6.34

σ2
1 = 0.14

σ2
2 = 0.22

σ2
3 = 0.10

The bit allocation that minimzes the average distortion and gives an average rate
of 1.5 bits/pixel is

R0 = 4, R1 = 1, R2 = 1, R3 = 0

which gives the average distortion

D ≈ 0.009497 · 6.34 + 0.3634 · 0.14 + 0.3634 · 0.22 + 0.10

4
≈ 0.07276

and the signal-to-noise ratio

10 · log10
σ2
X

D
≈ 13.7 [dB]
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6.4 a) 5 bits/sample can be regarded as fine quantization. Fine quantization and
optimal bit allocation will give (see the formula collection) the distortion D ≈
cσ22−2R where c = πe

6 (uniform quantization and entropy coding of gaussian

process) and σ2 =
√

σ2
0σ

2
1 . Thus

DKLT ≈ πe

6

√
5.85 · 0.15 · 2−2·5 ≈ 0.0013020

The variance of Xn is given by σ2
X = 1

2(σ
2
0 + σ2

1) = 3. Thus, the signal-to-noise
ratio is

SNRKLT = 10 log10
σ2
X

DKLT
≈ 33.6 [dB]

b) Since the transform is a KL transform, the correlation matrix Rθ for the trans-
form coefficients is diagonal. If the autocorrelation function for Xn is RXX(k),
the corresponding correlation matrix RX for Xn is given by

RX =





RXX(0) RXX(1)

RXX(1) RXX(0)



 =





3 RXX(1)

RXX(1) 3





The KL transform for this correlation matrix is the Hadamard transform

A =
1√
2





1 1

1 −1





which gives us

Rθ = ARXA
T =





3 +RXX(1) 0

0 3−RXX(1)



 =





5.85 0

0 0.15





Thus, RXX(1) = 2.85. Since this is all the information we can deduce, the best
predictor we can construct is an order 1 predictor. Since the quantization is
fine, we ignore the effect of quantization on the predictor. The order 1 predictor
pn = a ·Xn−1 that minimizes the prediction error variance σ2

d is given by

σ2
d = E{(Xn − aXn−1)

2} = 3(1 + a2)− 5.7a

∂

∂a
σ2
d = 6a− 5.7 = 0 ⇒ a = 0.95 ⇒ σ2

d = 0.2925

Dpred =
πe

6
0.2925 · 2−2·5 ; SNRpred = 10 log10

σ2
X

Dpred
≈ 38.7 [dB]

6.5 Expressing the two transforms as matrices we get
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A1 =
1√
2

















1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

















and A2 =

















1/2 1/2 1/2 1/2

1/2 1/2 −1/2 −1/2

1/
√
2 −1/

√
2 0 0

0 0 1/
√
2 −1/

√
2

















.

Let RX =

















1 0.9 0.92 0.93

0.9 1 0.9 0.92

0.92 0.9 1 0.9

0.93 0.92 0.9 1

















denote the 4 × 4 correlation matrix of the

source. The variances of the transform components can now be found in the diago-
nals of A1RA

T
1 and A2RA

T
2 respectively.

Repeatedly adding one bit to the component with the currently largest distortion
yields the following tables over distortions. Individual component distortions, for
the gaussian Max quantization case, are listed in the formula collection.

Variances 1.9 0.1 1.9 0.1

1st bit 0.6905 0.0363 0.6905 0.0363

2nd bit 0.2232 0.2232

3rd bit 0.0656 0.0656

Transform at A

Variances 3.5245 0.2755 0.1 0.1

1st bit 1.2808 0.1001 0.0363 0.0363

2nd bit 0.4141 0.0324

3rd bit 0.1217

4th bit 0.0335

Transform at B

Since the resulting transforms are orthogonal we can compare the transform com-
ponent distortions directly,

10 log10
0.0656 + 0.0363 + 0.0656 + 0.0363

0.0335 + 0.0324 + 0.0363 + 0.0363
≈ 1.68

Hence the gain is approximately 1.68 dB.

6.6 a) Resulting variances for the different Y -signals: σ2
Y1

≈ 6.6091, σ2
Y2

≈ 0.7909 and
σ2
Y3

= 0.3. 4 bits will be allocated to Y1, 2 bits to Y2 and 1 bit to Y3. Note that
the sample-rate of Y3 is 2 times higher than for Y1 and Y2. For every 4 input
samples, 2 samples will be output at Y3 and one each at Y1 and Y2. Thus, the
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bits allocated to Y3 counts double. The bit-rate will hence be (4+2+2·1)/4 = 2
bits/sample.

b) D ≈ 1

4
(0.009497 · 6.6091 + 0.1175 · 0.7909 + 2 · 0.3634 · 0.3) ≈ 0.09343

Using a gaussian 4-level Max quantizer directly on the signal would result in
the distortion D ≈ 2 · 0.1175 = 0.235, i.e., 4 dB worse than the subband coder.

6.7 The system is equivalent to a transform coder, using the Hadamard transform on
2× 2 blocks. The four transform components are

Y1 = (Xi,j +Xi,j+1 +Xi+1,j +Xi+1,j+1)/2

Y2 = (Xi,j +Xi,j+1 −Xi+1,j −Xi+1,j+1)/2

Y3 = (Xi,j −Xi,j+1 +Xi+1,j −Xi+1,j+1)/2

Y4 = (Xi,j −Xi,j+1 −Xi+1,j +Xi+1,j+1)/2

with variances
σ2
1 = Var{Y1} = 3.7071

σ2
2 = Var{Y2} = 0.1493

σ2
3 = Var{Y3} = 0.0929

σ2
4 = Var{Y4} = 0.0507

Rate 2 bits/pixel ⇒ distribute 4 · 2 = 8 bits on the four quantizers. Y1 will be
quantized with 4 bits, Y2 with 2 bits and Y3 and Y4 with one bit each. This gives a
resulting average distortion

D = (0.009497 · σ2
1 + 0.1175 · σ2

2 + 0.3634 · (σ2
3 + σ2

4))/4 ≈ 0.0262
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