
Linear predictive coding, example

Problem

Suppose the signal is a stationary Gaussian source Xn with zero mean and auto
correlation function RXX(k) = E{XnXn+k}. We know the following values of
RXX :

RXX(0) = 5.98, RXX(1) = 5.39, RXX(2) = 4.55, RXX(3) = 3.95

The variance of the signal is σ2
X = RXX(0).

We want to code the source using linear prediction followed by uniform quan-
tization and perfect, memoryless source coding. The step size of the quantizer
is chosen such that the resulting rate after the source coder is 5 bits/sample.

No predictor

For reference, we first see what result we get when not using any prediction.
The rate R = 5 bits/sample is high enough that we can use the fine quantization
approximation. This gives us

D ≈ πe

6
· σ2

X · 2−2R ≈ 0.008312

Expressed as a signal-to-noise ration, we get

SNR = 10 · log10

σ2
X

D
≈ 28.57 [dB]

One-step predictor

We are now going to use a one-step linear predictor:

pn = a1X̂n−1 ≈ a1Xn−1

The prediction error variance is

σ2
d = E{(Xn − pn)2} ≈ E{(Xn − a1Xn−1)2} = (1 + a21)RXX(0)− 2a1RXX(1)

Differentiate with respect to a1 and set equal to zero

∂

∂a1
σ2
d = 2a1RXX(0)− 2RXX(1) = 0
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which gives us

a1 =
RXX(1)

RXX(0)
≈ 0.9013 ⇒ σ2

d ≈ 1.1218

The resulting distortion after quantization is then

D ≈ πe

6
· σ2

d · 2−2R ≈ 0.001559

Expressed as a signal-to-noise ration, we get

SNR = 10 · log10

σ2
X

D
≈ 35.84 [dB]

Two-step predictor

We are now going to use a two-step linear predictor:

pn = a1X̂n−1 + a2X̂n−2 ≈ a1Xn−1 + a2Xn−2

The prediction error variance is

σ2
d = E{(Xn − pn)2} ≈ E{(Xn − a1Xn−1 − a2Xn−2)2}

= (1 + a21 + a22)RXX(0)− 2a1RXX(1)− 2a2RXX(2) + 2a1a2RXX(1)

Differentiate with respect to a1 and a2 and set equal to zero

∂

∂a1
σ2
d = 2a1RXX(0)− 2RXX(1) + 2a2RXX(1) = 0

∂

∂a2
σ2
d = 2a2RXX(0)− 2RXX(2) + 2a1RXX(1) = 0

which can be written as the matrix equation

RA = P

where

A =

(
a1
a2

)
, R =

(
RXX(0) RXX(1)
RXX(1) RXX(0)

)
, P =

(
RXX(1)
RXX(2)

)
This gives us

A = R−1P ≈
(

1.1490
−0.2747

)
⇒ σ2

d ≈ 1.0371

The resulting distortion after quantization is then

D ≈ πe

6
· σ2

d · 2−2R ≈ 0.001442

Expressed as a signal-to-noise ration, we get

SNR = 10 · log10

σ2
X

D
≈ 36.18 [dB]
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Three-step predictor

We are now going to use a three-step linear predictor:

pn = a1X̂n−1 + a2X̂n−2 + a3X̂n−3 ≈ a1Xn−1 + a2Xn−2 + a3Xn−3

Similarly to the previous predictors, we can express the prediction error variance
using the auto correlation function and then differentiate it with respect to each
of the predictor coefficients and set equal to zero to get a linear equation system.
Since we know the structure of this equation system we can immediately express
it as a matrix equation

RA = P

where

A =

 a1
a2
a3

 , R =

 RXX(0) RXX(1) RXX(2)
RXX(1) RXX(0) RXX(1)
RXX(2) RXX(1) RXX(0)

 , P =

 RXX(1)
RXX(2)
RXX(3)


This gives us

A = R−1P ≈

 1.2028
−0.4997

0.1958

 ⇒ σ2
d ≈ 0.9974

The resulting distortion after quantization is then

D ≈ πe

6
· σ2

d · 2−2R ≈ 0.001386

Expressed as a signal-to-noise ration, we get

SNR = 10 · log10

σ2
X

D
≈ 36.35 [dB]

Analysis

As can be seen, the results gets better the larger the predictor is. This will
always be true when we ignore the effect of the quantization on the prediction
using our approximation. Note however that in the real world, having a long
predictor might actually give a worse result than a shorter predictor, since we
are feeding back the quantization noise into the predictor loop. See the lecture
slides for examples of this effect.
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