Discrete Markov models

Harald Nautsch

Markov sources

Assume that we have a source that gives a sequence $\{x_n\}$ as output. If the conditional probabilities for the outcome x_n at time n only depend on the previous k outcomes

$$p(x_n | x_{n-1} x_{n-2} x_{n-3} \dots) = p(x_n | x_{n-1} \dots x_{n-k})$$

the source is said to be a *Markov source of order* k. That means that a Markov source has a limited memory k steps back in time.

If the alphabet has the size N the Markov source can be described by a state model, where we have N^k states $(x_{n-1} \ldots x_{n-k})$ and where we go from state $(x_{n-1} \ldots x_{n-k})$ to state $(x_n \ldots x_{n-k+1})$ with the probability $p(x_n | x_{n-1} \ldots x_{n-k})$. These probabilities are called *transition probabilities*. We can call the states s_i , where $i = 1 \ldots N^k$.

Example

Suppose we have a Markov source of order 2 with the alphabet $\mathcal{A} = \{a, b\}$ and the transition probabilities

$$p(a|aa) = 0.9 ; p(b|aa) = 0.1 ; p(a|ab) = 0.7 ; p(b|ab) = 0.3$$

$$p(a|ba) = 0.2 ; p(b|ba) = 0.8 ; p(a|bb) = 0.05 ; p(b|bb) = 0.95$$

Note that the transition probabilities for each state must sum to 1. We can draw the Markov source as the graph below:

Stationary distribution

We want to be able to calculate the probability that we at any give time are standing in a certain state, the *stationary distribution*.

The Markov source can be described by its *transition matrix* **P**. This matrix contains on row *i* and column *j* the probability of going from state s_i to state s_j .

Example, cont.

For our example source we have, setting $s_1 = aa, s_2 = ab, s_3 = ba$ and $s_4 = bb$:

$$\mathbf{P} = \begin{pmatrix} 0.9 & 0 & 0.1 & 0 \\ 0.7 & 0 & 0.3 & 0 \\ 0 & 0.2 & 0 & 0.8 \\ 0 & 0.05 & 0 & 0.95 \end{pmatrix}$$

Suppose that we at time n are standing in state s_i with the probability p_i^n . The distribution at time n + 1 can then be calculated as

$$[p_1^{n+1} \ p_2^{n+1} \ \dots \ p_{N^k}^{n+1}] = [p_1^n \ p_2^n \ \dots \ p_{N^k}^n] \cdot \mathbf{P}$$

If we now let n approach infinity, we get the stationary distribution. We denote the probability of standing in state s_i as w_i and the stationary distribution as $\bar{w} = [w_1 \ w_2 \ \dots \ w_{N^k}]$. The stationary distribution can then be found by solving the equation system

$$\bar{w} = \bar{w} \cdot \mathbf{P}$$

or

 $\bar{w} \cdot (\mathbf{P} - \mathbf{I}) = \bar{0}$

This equation system is underdetermined. To be able to solve it, we have to remove one of the equations and replace it with $\sum_{i=1}^{N^k} w_i = 1$ (since w_i are probabilities, they must sum to 1).

Example, cont.

Solve

$$\bar{w} \cdot (\mathbf{P} - \mathbf{I}) = \bar{w} \cdot \begin{pmatrix} -0.1 & 0 & 0.1 & 0 \\ 0.7 & -1 & 0.3 & 0 \\ 0 & 0.2 & -1 & 0.8 \\ 0 & 0.05 & 0 & -0.05 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$$

Replace the third equation with $\sum_{i=1}^{N^k} w_i = 1$ (it doesn't matter which equation we choose). So instead we solve the equation system

$$\bar{w} \cdot \begin{pmatrix} -0.1 & 0 & 1 & 0 \\ 0.7 & -1 & 1 & 0 \\ 0 & 0.2 & 1 & 0.8 \\ 0 & 0.05 & 1 & -0.05 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$$

 $\implies \quad \bar{w} = \left(\begin{array}{ccc} 0.28 & 0.04 & 0.04 & 0.64 \end{array}\right)$

I.e., we're standing in state aa with the probability 0.28, in state ab or ba with the probability 0.04 each and in state bb with the probability 0.64.

Probabilities of symbol sequences

By calculating the probabilities for the different states we have also calculated the probabilities for k-tuples of source symbols. From this distribution we can of course calculate the probabilities for shorter sequences by calculating marginal distributions, i.e. if we want to know the probabilities for n-tuples, n < k we just sum the probabilities where the first n symbols are the same.

Example, cont.

$$p(a) = p(aa) + p(ab) = 0.28 + 0.04 = 0.32$$

 $p(b) = p(ba) + p(bb) = 0.04 + 0.64 = 0.68$

We can also calculate the probabilities for longer symbol sequences by using the transition probabilities. For example, for triplets we get $p(x_{i+2}x_{i+1}x_i) = p(x_{i+1}x_i) \cdot p(x_{i+2}|x_{i+1}x_i).$

Example, cont.

p(aaa)	=	$p(aa) \cdot p(a aa) = 0.28 \cdot 0.9 = 0.252$
p(aab)	=	$p(ab) \cdot p(a ab) = 0.04 \cdot 0.7 = 0.028$
p(aba)	=	$p(ba) \cdot p(a ba) = 0.04 \cdot 0.2 = 0.008$
p(abb)	=	$p(bb) \cdot p(a bb) = 0.64 \cdot 0.05 = 0.032$
p(baa)	=	$p(aa) \cdot p(b aa) = 0.28 \cdot 0.1 = 0.028$
p(bab)	=	$p(ab) \cdot p(b ab) = 0.04 \cdot 0.3 = 0.012$
p(bba)	=	$p(ba) \cdot p(b ba) = 0.04 \cdot 0.8 = 0.032$
p(bbb)	=	$p(bb) \cdot p(b bb) = 0.64 \cdot 0.95 = 0.608$

Entropy rates for Markov sources

The entropy rate of a Markov source is given by

$$\lim_{n \to \infty} H(X_n | X_1 X_2 \dots X_{n-1}) = H(X_n | X_{n-1} \dots X_{n-k})$$

because of the limited memory. The entropy rate can also be calculated as the average of the entropies for the different states.

$$\sum_{i=1}^{N^k} w_j \cdot H(S_{i+1}|S_i = s_j)$$

 S_i is a random process that describes the state sequence. $H(S_{i+1}|S_i = s_j)$ is the entropy of the transition probabilities in state s_j .

Example, cont.

$$H(X_n | X_{n-1} \dots X_{n-k}) = -0.252 \cdot \log 0.9 - 0.028 \cdot \log 0.7$$

-0.008 \cdot \log 0.2 - 0.032 \cdot \log 0.05
-0.028 \cdot \log 0.1 - 0.012 \cdot \log 0.3
-0.032 \cdot \log 0.8 - 0.608 \cdot \log 0.95
\approx 0.3787

$$\begin{split} \sum_{j=1}^{N^k} w_j \cdot H(S_{i+1}|S_i = s_j) &= 0.28 \cdot (-0.1 \cdot \log 0.1 - 0.9 \cdot \log 0.9) + \\ &\quad 0.04 \cdot (-0.7 \cdot \log 0.7 - 0.3 \cdot \log 0.3) + \\ &\quad 0.04 \cdot (-0.2 \cdot \log 0.2 - 0.8 \cdot \log 0.8) + \\ &\quad 0.64 \cdot (-0.05 \cdot \log 0.05 - 0.95 \cdot \log 0.95) \approx \\ &\approx 0.3787 \end{split}$$