Discrete Markov models

Harald Nautsch

Markov sources

Assume that we have a source that gives a sequence $\left\{x_{n}\right\}$ as output. If the conditional probabilities for the outcome x_{n} at time n only depend on the previous k outcomes

$$
p\left(x_{n} \mid x_{n-1} x_{n-2} x_{n-3} \ldots\right)=p\left(x_{n} \mid x_{n-1} \ldots x_{n-k}\right)
$$

the source is said to be a Markov source of order k. That means that a Markov source has a limited memory k steps back in time.

If the alphabet has the size N the Markov source can be described by a state model, where we have N^{k} states $\left(x_{n-1} \ldots x_{n-k}\right)$ and where we go from state $\left(x_{n-1} \ldots x_{n-k}\right)$ to state $\left(x_{n} \ldots x_{n-k+1}\right)$ with the probability $p\left(x_{n} \mid x_{n-1} \ldots x_{n-k}\right)$. These probabilities are called transition probabilities. We can call the states s_{i}, where $i=1 \ldots N^{k}$.

Example

Suppose we have a Markov source of order 2 with the alphabet $\mathcal{A}=\{a, b\}$ and the transition probabilities

$$
\begin{gathered}
p(a \mid a a)=0.9 ; p(b \mid a a)=0.1 ; p(a \mid a b)=0.7 ; p(b \mid a b)=0.3 \\
p(a \mid b a)=0.2 ; p(b \mid b a)=0.8 ; p(a \mid b b)=0.05 ; p(b \mid b b)=0.95
\end{gathered}
$$

Note that the transition probabilities for each state must sum to 1 . We can draw the Markov source as the graph below:

Stationary distribution

We want to be able to calculate the probability that we at any give time are standing in a certain state, the stationary distribution.

The Markov source can be described by its transition matrix \mathbf{P}. This matrix contains on row i and column j the probability of going from state s_{i} to state s_{j}.

Example, cont.

For our example source we have, setting $s_{1}=a a, s_{2}=a b, s_{3}=b a$ and $s_{4}=b b$:

$$
\mathbf{P}=\left(\begin{array}{llll}
0.9 & 0 & 0.1 & 0 \\
0.7 & 0 & 0.3 & 0 \\
0 & 0.2 & 0 & 0.8 \\
0 & 0.05 & 0 & 0.95
\end{array}\right)
$$

Suppose that we at time n are standing in state s_{i} with the probability p_{i}^{n}. The distribution at time $n+1$ can then be calculated as

$$
\left[\begin{array}{llll}
p_{1}^{n+1} & p_{2}^{n+1} & \ldots & p_{N^{k}}^{n+1}
\end{array}\right]=\left[\begin{array}{llll}
p_{1}^{n} & p_{2}^{n} & \ldots & p_{N^{k}}^{n}
\end{array}\right] \cdot \mathbf{P}
$$

If we now let n approach infinity, we get the stationary distribution. We denote the probability of standing in state s_{i} as w_{i} and the stationary distribution as $\bar{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \ldots & w_{N^{k}}\end{array}\right]$. The stationary distribution can then be found by solving the equation system

$$
\bar{w}=\bar{w} \cdot \mathbf{P}
$$

or

$$
\bar{w} \cdot(\mathbf{P}-\mathbf{I})=\overline{0}
$$

This equation system is underdetermined. To be able to solve it, we have to remove one of the equations and replace it with $\sum_{i=1}^{N^{k}} w_{i}=1$ (since w_{i} are probabilities, they must sum to 1).

Example, cont.

Solve

$$
\bar{w} \cdot(\mathbf{P}-\mathbf{I})=\bar{w} \cdot\left(\begin{array}{llll}
-0.1 & 0 & 0.1 & 0 \\
0.7 & -1 & 0.3 & 0 \\
0 & 0.2 & -1 & 0.8 \\
0 & 0.05 & 0 & -0.05
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right)
$$

Replace the third equation with $\sum_{i=1}^{N^{k}} w_{i}=1$ (it doesn't matter which equation we choose). So instead we solve the equation system

$$
\bar{w} \cdot\left(\begin{array}{llll}
-0.1 & 0 & 1 & 0 \\
0.7 & -1 & 1 & 0 \\
0 & 0.2 & 1 & 0.8 \\
0 & 0.05 & 1 & -0.05
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
\Longrightarrow \quad \bar{w}=\left(\begin{array}{llll}
0.28 & 0.04 & 0.04 & 0.64
\end{array}\right)
$$

I.e., we're standing in state $a a$ with the probability 0.28 , in state $a b$ or $b a$ with the probability 0.04 each and in state $b b$ with the probability 0.64 .

Probabilities of symbol sequences

By calculating the probabilities for the different states we have also calculated the probabilities for k-tuples of source symbols. From this distribution we can of course calculate the probabilities for shorter sequences by calculating marginal distributions, i.e. if we want to know the probabilities for n-tuples, $n<k$ we just sum the probabilities where the first n symbols are the same.

Example, cont.

$$
\begin{aligned}
& p(a)=p(a a)+p(a b)=0.28+0.04=0.32 \\
& p(b)=p(b a)+p(b b)=0.04+0.64=0.68
\end{aligned}
$$

We can also calculate the probabilities for longer symbol sequences by using the transition probabilities. For example, for triplets we get
$p\left(x_{i+2} x_{i+1} x_{i}\right)=p\left(x_{i+1} x_{i}\right) \cdot p\left(x_{i+2} \mid x_{i+1} x_{i}\right)$.

Example, cont.

$$
\begin{aligned}
p(a a a) & =p(a a) \cdot p(a \mid a a)=0.28 \cdot 0.9=0.252 \\
p(a a b) & =p(a b) \cdot p(a \mid a b)=0.04 \cdot 0.7=0.028 \\
p(a b a) & =p(b a) \cdot p(a \mid b a)=0.04 \cdot 0.2=0.008 \\
p(a b b) & =p(b b) \cdot p(a \mid b b)=0.64 \cdot 0.05=0.032 \\
p(b a a) & =p(a a) \cdot p(b \mid a a)=0.28 \cdot 0.1=0.028 \\
p(b a b) & =p(a b) \cdot p(b \mid a b)=0.04 \cdot 0.3=0.012 \\
p(b b a) & =p(b a) \cdot p(b \mid b a)=0.04 \cdot 0.8=0.032 \\
p(b b b) & =p(b b) \cdot p(b \mid b b)=0.64 \cdot 0.95=0.608
\end{aligned}
$$

Entropy rates for Markov sources

The entropy rate of a Markov source is given by

$$
\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1} X_{2} \ldots X_{n-1}\right)=H\left(X_{n} \mid X_{n-1} \ldots X_{n-k}\right)
$$

because of the limited memory. The entropy rate can also be calculated as the average of the entropies for the different states.

$$
\sum_{j=1}^{N^{k}} w_{j} \cdot H\left(S_{i+1} \mid S_{i}=s_{j}\right)
$$

S_{i} is a random process that describes the state sequence. $H\left(S_{i+1} \mid S_{i}=s_{j}\right)$ is the entropy of the transition probabilities in state s_{j}.

Example, cont.

$$
\begin{aligned}
H\left(X_{n} \mid X_{n-1} \ldots X_{n-k}\right)= & -0.252 \cdot \log 0.9-0.028 \cdot \log 0.7 \\
& -0.008 \cdot \log 0.2-0.032 \cdot \log 0.05 \\
& -0.028 \cdot \log 0.1-0.012 \cdot \log 0.3 \\
& -0.032 \cdot \log 0.8-0.608 \cdot \log 0.95 \\
\approx & \underline{0.3787} \\
\sum_{j=1}^{N^{k}} w_{j} \cdot H\left(S_{i+1} \mid S_{i}=s_{j}\right)= & 0.28 \cdot(-0.1 \cdot \log 0.1-0.9 \cdot \log 0.9)+ \\
& 0.04 \cdot(-0.7 \cdot \log 0.7-0.3 \cdot \log 0.3)+ \\
& 0.04 \cdot(-0.2 \cdot \log 0.2-0.8 \cdot \log 0.8)+ \\
& 0.64 \cdot(-0.05 \cdot \log 0.05-0.95 \cdot \log 0.95) \approx \\
\approx \quad & \underline{0.3787}
\end{aligned}
$$

