
1/29

Predictive coding

Samples close to each other in a signal are often strongly correlated. To
get an efficient coding it’s always a good idea to utilize the correlation
(memory).

A general predictive coder utilizes the signal samples up to N steps back
in time to make a prediction (guess) of what the signal sample at the
present time should be and then codes the difference between the
prediction and the real value.

We will concentrate on linear predictors, where the prediction is a linear
combination of old sample values. This corresponds to having an AR
model of the source.



2/29

Linear prediction

Idea: We guess (predict) the signal value at time n as a linear
combination of the previous N sample values.

pn = a1xn−1 + a2xn−2 + . . .+ aNxn−N =

=
N∑
i=1

aixn−i

The difference between the real value and the predicted value, the
prediction error, dn = xn − pn is quantized, possibly source coded and
then sent to the receiver. The receiver reconstructs dn, calculates pn and
can then recreate xn.

Unfortunately, this will not work in practice!

The problem is that the receiver can only recreate a distorted version d̂n
of the prediction error and therefore only a distorted version x̂n of the
signal.



3/29

Linear prediction

In order for the predictive coder to work, the coder must perform the
same prediction that the decoder can perform.
The prediction must be done from the reconstructed signal x̂n instead of
from the original signal.

pn = a1x̂n−1 + a2x̂n−2 + . . .+ aN x̂n−N =

=
N∑
i=1

ai x̂n−i

The prediction error dn is quantized and transmitted. Both coder and
decoder recreate d̂n and x̂n = pn + d̂n.



4/29

Predictive coder and decoder

-����
- Q -

?����
�P

6

-

xn +

−
+

+

dn d̂n

pn

x̂n

-����
-

�P

6

d̂n +

+

x̂n

pn

Predictive coder Predictive decoder



5/29

Optimizing the predictor

How should we choose the predictor coefficients ai?
Given a rate R we want to minimize the distortion

D = E{(xn − x̂n)2} = E{((pn + dn)− (pn + d̂n))2} = E{(dn − d̂n)2}

The quantization makes it hard to calculate optimal ai exactly. If we
assume fine quantization, ie that the number of quantization levels is
large, we can do the approximation

x̂n ≈ xn

ie we will do our calculations as if we predicted from the original signal.
Using fine quantization we also have the approximation

D ≈ c · σ2
d · 2−2R

where σ2
d is the variance of the prediction error and c depends on what

type of quantization we’re doing and the distribution of dn. We can thus
minimize the distortion by minimizing the variance of the prediction error.



6/29

Optimizing the predictor

Variance of the prediction error:

σ2
d = E{d2

n} = E{(xn − pn)2} =

= E{(xn −
N∑
i=1

ai x̂n−i )
2} ≈

≈ E{(xn −
N∑
i=1

aixn−i )
2}

Differentiate with respect to each aj and set equal to 0, which gives us N
equations

∂

∂aj
σ2
d = −2 · E{(xn −

N∑
i=1

aixn−i ) · xn−j} = 0



7/29

Matrix description

This can be written in the form of a matrix equation

RA = P

where

R =


RXX (0) RXX (1) · · · RXX (N − 1)
RXX (1) RXX (0) · · · RXX (N − 2)

...
...

. . . · · ·
RXX (N − 1) RXX (N − 2) · · · RXX (0)



A =


a1
a2
...
aN

 , P =


RXX (1)
RXX (2)

...
RXX (N)


and where RXX (k) = E{xn · xn+k} is the auto correlation function of xn.



8/29

Matrix description

The solution can be found as

A = R−1P

For the optimal predictor A we get the prediction error variance

σ2
d = RXX (0)− ATP

NOTE: This formula can not be used for other choices of prediction
coefficients.



9/29

Prediction gain

With fine quantization the distortion and signal to noise ratio are given
approximately as

Dp ≈ c · σ2
d · 2−2R , SNRp = 10 · log10

σ2
x

Dp

where σ2
x is the variance of the original signal.

If we had quantized the original signal directly we would have gotten

Do ≈ c · σ2
x · 2−2R , SNRo = 10 · log10

σ2
x

Do

The difference is referred to as the prediction gain

SNRp − SNRo = 10 · log10

Do

Dp
≈ 10 · log10

σ2
x

σ2
d



10/29

Estimating the auto correlation function

Given a long sequence x1, x2, . . . , xn of test data, the auto correlation
function can be estimated as

RXX (k) =
1

n − k

n−k∑
i=1

xi · xi+k

In Matlab this can be written as

mean(x(1:end-k).*x(k+1:end))



11/29

Signals with nonzero mean

What do we do if we have a signal with a mean value m 6= 0?

1. If the signal mean value is small compared to the variance we can
just use linear prediction.

2. If not, we can create a new signal yn = xn −m, construct a linear
predictor for yn and send m as side information.

3. Alternatively we can construct an affine predictor

pn =
N∑
i=1

aixn−i + a0

Disregarding the quantization this will give the same result as
alternative 2.



12/29

Multidimensional predictors

We can of course generalize linear prediction to work with
multidimensional signals, like images.
For example, if we have an image signal xij and want to do prediction
from the pixel to the left of and the pixel above the current pixel

pij = a1 · xi,j−1 + a2 · xi−1,j

The optimal predictor is then given by the solution to the equation system[
E{x2i,j−1} E{xi,j−1 · xi−1,j}

E{xi,j−1 · xi−1,j} E{x2i−1,j}

] [
a1
a2

]
=

[
E{xi,j · xi,j−1}
E{xij · xi−1,j}

]
or, expressed using the auto correlation function[

RXX (0, 0) RXX (1,−1)
RXX (1,−1) RXX (0, 0)

] [
a1
a2

]
=

[
RXX (0, 1)
RXX (1, 0)

]



13/29

Example, predictive coding of image

Original image, 768× 512 pixels, 8 bits/pixel



14/29

Lloyd-Max quantization, 8 levels

Rate: R = 3 bits/pixel
Distortion: D ≈ 59.02
PSNR: 30.42 dB



15/29

Predictor

Estimated auto correlation function (mean removed from image)

RXX (0, 0) = σ2 ≈ 2580.9

RXX (1, 0) ≈ 0.9770 · σ2

RXX (0, 1) ≈ 0.9863 · σ2

RXX (1, 1) ≈ 0.9703 · σ2

RXX (1,−1) ≈ 0.9665 · σ2

Predictor

pij = 0.8008 · x̂i,j−1 + 0.6493 · x̂i−1,j − 0.4525 · x̂i−1,j−1

An eight level Lloyd-Max quantizer is optimized for the prediction error.



16/29

Prediction error, 8 levels



17/29

Quantized prediction error, 8 levels



18/29

Decoded image, 8 levels

Rate: R = 3 bits/pixel
Distortion: D ≈ 5.62
PSNR: 40.63 dB (Prediction gain 10.21 dB)



19/29

Lloyd-Max quantization, 2 levels

Rate: R = 1 bits/pixel
Distortion: D ≈ 735.77
PSNR: 19.46 dB



20/29

Prediction error, 2 levels



21/29

Quantized prediction error, 2 levels



22/29

Decoded image, 2 levels

Rate: R = 1 bits/pixel
Distortion: D ≈ 84.81
PSNR: 28.85 dB (Prediction gain 9.39 dB)



23/29

Example: hey04.wav
A 16 bit version of hey04.wav from lab 1/2 is coded using different
orders of predictors.
Uniform quantization to 256 levels.
The plot shows SNR as a function of the number of predictor coefficients.

0 1 2 3 4 5 6 7 8
42

43

44

45

46

47

48

49



24/29

Example: hey04.wav
A 16 bit version of hey04.wav from lab 1/2 is coded using different
orders of predictors.
Uniform quantization to 32 levels.
The plot shows SNR as a function of the number of predictor coefficients.

0 1 2 3 4 5 6 7 8
25

26

27

28

29

30

31

32

33

34



25/29

Example: hey04.wav
A 16 bit version of hey04.wav from lab 1/2 is coded using different
orders of predictors.
Uniform quantization to 4 levels.
The plot shows SNR as a function of the number of predictor coefficients.

0 1 2 3 4 5 6 7 8
8

10

12

14

16

18

20

22



26/29

Lossless coding

Linear predictive coding can also be used for lossless coding.
Assuming that we have an integer signal, we must make sure that the
predictor also produces integers.
For example we have lossless JPEG, which can use the predictors

1. pij = Ii−1,j

2. pij = Ii,j−1

3. pij = Ii−1,j−1

4. pij = Ii,j−1 + Ii−1,j − Ii−1,j−1

5. pij = bIi,j−1 + (Ii−1,j − Ii−1,j−1)/2c
6. pij = bIi−1,j + (Ii,j−1 − Ii−1,j−1)/2c
7. pij = b(Ii,j−1 + Ii−1,j)/2c



27/29

Lossless coding

We code the parrot image using the predictor

pij = Ii,j−1 + Ii−1,j − Ii−1,j−1

followed by Huffman coding of the prediction error. We get the rate 4.18
bits/pixel.

If we instead use the predictor

pij = b0.8008 · Ii,j−1 + 0.6493 · Ii−1,j − 0.4525 · Ii−1,j−1c

followed by Huffman coding we get the rate 3.93 bits/pixel.



28/29

Audio signals from labs 1 and 2
Predictors of order 1 and 2 that minimize prediction error variances.

hey04_8bit.wav

pn = 0.9820 · xn−1

pn = 1.2970 · xn−1 − 0.3207 · xn−2

nuit04_8bit.wav

pn = 0.9981 · xn−1

pn = 1.8434 · xn−1 − 0.8468 · xn−2

speech.wav

pn = 0.9507 · xn−1

pn = 1.7719 · xn−1 − 0.8639 · xn−2



29/29

FLAC (Free Lossless Audio Coding)

Lossless coding of audio signals.

The audio signal is split into blocks (typically a couple of thousand
samples each).

Code the sum/difference of the two stereo channels if this gives a higher
compression.

Linear predictors are optimized for each block. There is also a possibility
to use fixed predictors (compare to lossless JPEG).

The prediction error is coded using Rice codes (roughly the same thing as
Golomb codes).

https://xiph.org/flac/


