
1/61

Coding with distortion

We have a signal xn, n = 1 . . .N to code. The alphabet is a subset of
the real numbers A ⊆ R. The alphabet can be continuous.

If we don’t have the demand that the decoded signal should be exactly
the same as the original signal we can get a lower data rate than if we
have lossless coding. Typically the signal is described using a smaller
alphabet than the original signal uses (quantization).

In the case where the original alphabet is continuous, in general an
infinite number of bits is required to describe the signal losslessly.

The more bits that are used, the closer to the original signal the decoded
signal x̂n will be.

2/61

Distortion measure

We need a measure of how much error we have in the decoded signal, the
so called distortion.

The most common measure is a quadratic error measure, combined with
averaging over the whole sequence

D =
1

N

N∑
n=1

(xn − x̂n)2

This is the mean square error of the decoded sequence.

3/61

Distortion measure, cont.

Often we want to consider the distortion (or noise power) relative to the
signal power, the so called signal to noise ratio (SNR)

σ2
x =

1

N

N∑
n=1

x2
n

SNR =
σ2
x

D

SNR is usually expressed in dB

SNR = 10 · log10

σ2
x

D

4/61

PSNR

When coding still images and video we usually use the peak-to-peak
signal to noise ratio (PSNR)

PSNR = 10 · log10

x2
pp

D

where xpp is the difference between the maximum and minum values of
the signal.

For example, if the data to be coded is a grayscale image quantized to 8
bits, the signal can assume values between 0 and 255. The PSNR is then

PSNR = 10 · log10

2552

D

5/61

Random signal models

A signal can be modelled as an amplitude continuous stationary random
process Xn, with distribution function FX (x) and density function fX (x).

FX (x) = Pr(X ≤ x)

fX (x) =
d

dx
FX (x)

fX (x) ≥ 0 , ∀x∫ ∞
−∞

fX (x)dx = 1

Pr(a ≤ X ≤ b) = FX (b)− FX (a) =

∫ b

a

fX (x)dx

6/61

Random signal models, cont.

Mean value

mX = E{Xn} =

∫ ∞
−∞

x · fX (x)dx

Quadratic mean value

E{X 2
n } =

∫ ∞
−∞

x2 · fX (x)dx

Variance
σ2
X = E{(Xn −mx)2} = E{X 2

n } −m2
x

In most of our cases we will use signal models with mean value 0. In
those cases the variance is equal to the quadratic mean value.

The variance (or rather the quadratic mean value) is a measure of the
signal power.

7/61

Common distributions

Uniform distribution

fX (x) =

{
1

b−a a ≤ x ≤ b

0 otherwise

Mean value m = a+b
2 , variance σ2 = (b−a)2

12

Gaussian distribution (normal distribution)

fX (x) =
1√
2πσ

e−
(x−m)2

2σ2

Laplace distribution

fX (x) =
1√
2σ

e−
√

2|x−m|
σ

8/61

Random signal models, cont.

The dependence of the signal value in two times instances n och m is
given by the twodimensional density function fXnXm(xn, xm).

If we can write this as a product fX (xn) · fX (xm) we say that the signal in
the two time instances are independent.

A signal where all time instances are independent of each other is a
memoryless signal or a white signal.

In most cases we will describe the dependence using the correlation
E{Xn · Xm}.

If E{Xn · Xm} = E{Xn} · E{Xm} we say that the signal in the two time
instances are uncorrelated. Independent signals are uncorrelated, but the
reverse is not necessarily true.

9/61

Memory sources

Markov source of order k

f (xn|xn−1xn−2 . . .) = f (xn|xn−1 . . . xn−k)

Linear models, εn white (memoryless) noise.
AR(N)

xn =
N∑
i=1

ai · xn−i + εn

MA(M)

xn =
M∑
j=1

bi · εn−j + εn

ARMA(N,M)

xn =
N∑
i=1

ai · xn−i +
M∑
j=1

bi · εn−j + εn

10/61

Random signal models, cont.

The correlation properties of the signal is usually expressed using the
auto correlation function, which for a stationary process is given by

RXX (k) = E{XnXn+k}

The auto correlation function is symmetric: RXX (−k) = RXX (k).

We also have: |RXX (k)| ≤ RXX (0) = E{X 2
n }.

For a memoryless (white) process we have

RXX (k) = σ2
X · δ(k) =

{
σ2
X k = 0

0 otherwise

For an AR(1) process we have

RXX (k) = a|k| · σ2
X (|a| < 1)

11/61

Multidimensional signals

The auto correlation function can of course also be defined for
multidimensional signals. For instance, for a twodimensional stationary
random process Xi,j the auto correlation function is given by

RXX (k , l) = E{Xi,jXi+k,j+l}

The auto correlation function is symmetric: RXX (−k ,−l) = RXX (k, l)

We also have: |RXX (k, l)| ≤ RXX (0, 0) = E{X 2
i,j}

12/61

Random signal models, cont.

For a random signal Xn that is coded and then decoded to X̂n, the
distortion is given by

D = E{(X − X̂)2} =

∫ ∞
−∞

(x − x̂)2fX (x)dx

The signal power is (given mean zero)

E{X 2} = σ2
X − (E{X})2 = σ2

X

and SNR as before

SNR = 10 · log10

σ2
X

D

13/61

Theoretical limit

The rate-distortion function R(D) for a source gives the theoretically
lowest rate R we can use to code the source, on the condition that the
maximum allowed distortion is D. Compare to the entropy limit for
source coding.

Example: White gaussian process with variance σ2

R(D) =

{
1
2 log σ2

D 0 < D ≤ σ2

0 otherwise

Ie, if we allow a distortion that is larger than the variance of the process,
we don’t need to transmit any bits at all. The decoder can just set the
decoded signal equal to the mean value at each time instance, which will
give a distortion equal to the variance.
We can also se that R →∞ when D → 0

14/61

Gaussian source with memory

For gaussian sources with memory, the rate-distortion function can be
calculated from the power spectral density.

Φ(θ) = F{RXX (k)} =
∞∑

k=−∞

RXX (k) · e−j2πθk

The rate-distortion function is given by

R(D) =

∫ 1/2

−1/2

max{1

2
log

Φ(θ)

λ
, 0} dθ

where

D =

∫ 1/2

−1/2

min{λ,Φ(θ)} dθ

The integration can of course be done over any interval of size 1, since
the power spectral density is a periodic function.

15/61

Gaussian sources

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

D

R
(D

)

R(D) for an ideally bandlimited gaussian source (red), compared to the
R(D) for a memoryless/white gaussian source (blue). Both sources have
variance 1. As D tends towards 0, R(D) tends towards infinity for both
sources.

16/61

Quantization

Mapping from a continuous alphabet to a discrete alphabet (or mapping
from a large discrete alphabet to a smaller one). After quantization we
have a discrete signal, on which we can use our source coding methods
(Huffman, arithmetic coding, et c.)

A general M level quantizer is specified by M + 1 decision borders
bi ; i = 0 . . .M and M reconstruction levels (or reconstruction points)
yi ; i = 1 . . .M.

The quantization operator Q(x) is given by

Q(x) = yi if bi−1 < x ≤ bi

And the reconstructed signal is thus

x̂n = Q(xn)

17/61

Quantization

Sometimes it can be useful to see quantization and reconstruction as two
separate operations instead of just one operation.

Quantization: x → j such that bj−1 < x ≤ bj

Reconstruction: x̂ = yj

A sequence of x thus gives a sequence of indices j that can then be
coded by a source coder

The receiver decodes the index sequence and the maps the indices to the
corresponding reconstruction points.

18/61

Quantization, cont.

Given a random signal model the distortion is

D = E{(X − X̂)2} =

=

∫ ∞
−∞

(x − Q(x))2fX (x)dx =

=
M∑
i=1

∫ bi

bi−1

(x − yi)
2fX (x)dx

If no special source coding is used, ie if we just code the quantized signal
using a fixed length code, the rate is

R = dlog2 Me

19/61

Uniform quantization

The distance between two reconstruction points is constant

yj − yj−1 = ∆

∆ is the stepsize of the quantizer.

The reconstruction points are in the middle of their intervals, which
means that all decision regions (apart from the end intervals in some
cases) also are of the same size

bi − bi−1 = ∆

20/61

Uniform quantization, cont.

To simplify the calculations we can assume that the number of
reconstruction points is given by M = 2R and that the quantizer is
symmetric around the origin. The following results can easily be
generalized to arbitrary M.

The reconstruction point belonging to the interval [(j − 1)∆, j∆] is

yj =
2j − 1

2
∆

The simplest case is when the input distribution is uniform on the
interval [−A,A]:

∆ =
2A

M

21/61

Uniform quantization, cont.

The distortion for uniform quantization of a uniform distribution:

D =

M/2∑
i=−M/2+1

∫ i∆

(i−1)∆

(x − 2i − 1

2
∆)2 1

2A
dx = M · 1

2A
· ∆3

12
=

∆2

12

σ2
X =

(2A)2

12
=

∆2M2

12

SNR = 10 · log10

σ2
X

D
= 10 · log10 M

2 =

= 10 · log10 22R = 20 · R · log10 2 ≈ 6.02 · R

For every bit added to the quantizer (ie for every doubling of the number
of reconstruction points) we will get approximately 6 dB higher SNR.

22/61

Uniform quantization, cont.

For unlimited distributions (eg a gaussian distribution) the two end
intervals will be infinitely large (in the calculations below we assume that
that M is even and that the quantizer is symmetric around the origin).

D =

M/2∑
i=−M/2+1

∫ i∆

(i−1)∆

(x − 2i − 1

2
∆)2fX (x)dx +

+

∫ ∞
(M/2)∆

(x − M − 1

2
∆)2fX (x)dx +

+

∫ −(M/2)∆

−∞
(x − −M + 1

2
∆)2fX (x)dx

The last two terms are called the overload distortion of the quantizer.

23/61

Uniform quantization, cont.

To find the best choice of ∆ (the one that minimizes the distortion) we
have to solve

∂

∂∆
D = 0

which in the general case is a hard problem. Normally we will have to
find a numeric solution.

If the number of quantization levels M is large and ∆ is chosen so that
the overload distortion is small compared to the total distortion, the
distortion is approximately

D ≈ ∆2

12

24/61

Midrise vs midtread

-

6

x

x̂

-

6

x

x̂

When coding audio and image data we usually want to use a quantizer
that has a reconstruction level in 0, ie a midtread quantizer.

25/61

Uniform quantization, example

Uniform quantization (midtread) of a speech signal

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Original signal Quantized using ∆ = 0.1

Measured distortion: D ≈ 0.0008517
(Compare to ∆2/12 ≈ 0.0008333)

26/61

Lloyd-Max quantization

How should we chose decision borders and reconstruction points to
minimize the distortion? The answer will of course depend on the
distribution of the signal.

For a general quantizer we have

D =
M∑
i=1

∫ bi

bi−1

(x − yi)
2fX (x)dx

We want to find the the quantizer that minimizes the distortion D.

∂

∂yj
D = 0 ⇒ yj =

∫ bj
bj−1

x · fX (x)dx∫ bj
bj−1

fX (x)dx

The optimal placement of the reconstruction points is thus in the
centroid of the probability mass in each interval.

27/61

Lloyd-Max quantization, cont.

∂

∂bj
D = 0 ⇒ bj =

yj+1 + yj
2

The optimal placement of the decision borders is thus at the midpoints
between the reconstruction points, ie we should always quantize to the
closest reconstruction point.

Note that these demands are necessary but not sufficient.

Also note that yj depends on bj−1 and bj and that bj depends on yj+1

and yj . Usually we can only find closed solutions for simple distributions
and for a small number of reconstruction points.

If we can’t find a closed solution, we have to find the solution
numerically. One way of doing this is using Lloyd’s algorithm.

28/61

Lloyd’s algorithm

1. Start with a set of reconstruction points y
(0)
i , i = 1 . . .M. Set

k = 0, D(−1) =∞ and choose a threshold ε.

2. Calculate optimal decision borders b
(k)
j =

y
(k)
j+1 + y

(k)
j

2

3. Calculate the distortion D(k) =
M∑
i=1

∫ b
(k)
i

b
(k)
i−1

(x − y
(k)
i)2f (x)dx

4. If D(k−1) − D(k) < ε stop, otherwise continue

5. k = k + 1. Calculate new optimal reconstruction points

y
(k)
j =

∫ b
(k−1)
j

b
(k−1)
j−1

x · f (x)dx∫ b
(k−1)
j

b
(k−1)
j−1

f (x)dx

6. Repeat from 2

29/61

Example

-4 -3 -2 -1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lloyd-Max quantizer for a Gaussian distribution. R = 3, ie M = 23 = 8.

30/61

Compander quantization

Compressor function: c(x)

Expander function: c−1(x)

Quantize c(x) instead of x . The quantization is uniform. The receiver
applies the expander function on received data.
c(x) is usually chosen such that the quantization is finer for small values
of x .

Example of compander: µ-law

c(x) = xmax

ln(1 + µ |x|xmax
)

ln(1 + µ)
· sgn(x)

c−1(x) =
xmax

µ
((1 + µ)

|x|
xmax − 1) · sgn(x)

used in the american wired telephone network for coding of speech
signals using µ = 255. For the european telephone network there is a
similar standard called A-law.

31/61

Compander example

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
(x

)

Compressor function: c(x) = sgn(x) · |x |0.5
Uniform quantization (in the example ∆ = 0.1) of c(x) corresponds to a
non-uniform quantization of x , with smaller quantization intervals closer
to the origin.

32/61

Quantization using source coding

The probability P(j) of being in interval j is

P(j) =

∫ bj

bj−1

fX (x)dx

In the general case these probabilities are different for different intervals.
We could thus get a lower rate than logM by using some form of source
coding.

Finding the optimal quantizer given an allowed rate R after source coding
is a hard problem. However, it can be shown that for sufficiently large R
(fine quantization) the optimal quantizer is a uniform quantization.
Thus, if we are using some form of source coding, it is enough to use the
simplest form of quantization.

33/61

Fine quantization

When we have fine quantization, ie when the number of quantization
levels is large, the distortion is approximatively given by

D ≈ c · σ2
X · 2−2R

where σ2
X is the signal variance, R is the rate and c is a constant

depending on the type of quantization and the distribution of the signal.

Gaussian distribution, Lloyd-Max quantization:

c =
π
√

3

2

Gaussian distribution, uniform quantization, perfect source coding
(R = H(X̂)):

c =
πe

6

34/61

Fine quantization

For fine quantization we have the approximations
D ≈ 1

12

∫∞
−∞∆2(x)f (x)dx

M ≈
∫∞
−∞

1
∆(x)dx

where ∆(x) is a function describing the size of the quantization interval
at x and M is the resulting number of reconstruction points.

For fine Lloyd-Max quantization, we should choose

∆(x) = k · (f (x))−
1
3

and the resulting rate will be R = log2 M.

35/61

Approximation vs real values

Rate [bits/sample]
0 0.5 1 1.5 2 2.5 3 3.5 4

S
N

R
 [
d
B

]

-5

0

5

10

15

20

25

Real

Approximation

Uniform quantization of Gaussian signal, followed by perfect source
coding (R = H(X̂)). Real values compared to the approximation
D ≈ πe

6 · σ
2
X · 2−2R .

36/61

Approximation vs real values

Rate [bits/sample]
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

S
N

R
 [

d
B

]

0

5

10

15

20

25

30

35

Real

Approximation

Lloyd-Max quantization of Gaussian signal. Real values compared to the

approximation D ≈ π
√

3
2 · σ

2
X · 2−2R .

37/61

Real world signal

A mono version of the music file heyhey.wav is coded using a uniform
quantizer (midtread), followed by Huffman coding. The rate is varied by
varying the quantizer stepsize. No limitation of the number of levels is
done. For comparison, we have also estimated the entropy of the
quantized signal.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

R [bits/sample]

S
N

R
 [

d
B

]

Huffman

entropy

38/61

Vector quantization

Consecutive samples in a signal are often strongly correlated.

Example: 4000 samples from a speech signal, plot [xi , xi+1]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

39/61

Vector quantization, cont.

In order to utilize the dependence between samples we can use some form
of source coding that uses the memory of the signal, eg extended
Huffman coding or arithmetic coding where we let the interval division
depend on previous symbols.

We can also use the correlation between samples directly in the
quantizer, by quantizing several samples at once, vector quantization.

View L samples from the source as a L-dimensional vector.

x =

x1

x2

...
xL

40/61

Vector quantization, cont.

The quantizer is defined by its reconstruction vectors yi and decision
regions Vi .

Example: In two dimensions it can look like

0 1 2 3 4

0

1

2

3

4

41/61

Vector quantization, cont.

The set of reconstruction points {yi}, i = 1 . . .M is usually called the
codebook.

Distortion

D =
1

L

M∑
i=1

∫
Vi

|x− yi |2 · f (x) dx

Compare this to the distortion when doing scalar quantization

D =
M∑
i=1

∫ bi

bi−1

(x − yi)
2f (x)dx

A scalar quantizer is a onedimensional vector quantizer.

42/61

Data rate

To code the M reconstruction points using a fixed length code we need
dlogMe bits. Since we’re coding L samples at a time, the resulting rate is

R =
dlogMe

L
[bits/sample]

Alternatively, given dimension L and rate R

M = 2RL

It is of course possible to use some kind of source coding method when
doing vector quantization, but that’s usually not done.

43/61

Storage and time

We need to store the codebook both on the coder and the decoder side.
It might also have to be transmitted as side information. If we are using
L dimensions, have a rate of R bits per sample and each element of the
vectors is stored using b bits, we need

2RL · L · b

bits to store the whole codebook. The required storage space thus grows
very quickly when we increase the dimension.

If there is no structure in the codebook we have to compare each vector
that we quantize with all the vectors in the codebook in order to find the
closest one. When the dimension L is large this will take a lot of time.

44/61

Lloyd-Max in multiple dimensions

We want to find a quantizer that minimizes the distortion.
Necessary conditions for minimal distortion:

I The borders between decision regions should be in the middle
between the reconstruction points, ie we should quantize to the
closest reconstruction point (ie the decision regions are the Voronoi
regions of the reconstruction points).

I The reconstruction points should be located in the centroids of the
decision regions

yi =

∫
Vi
x · f (x)dx∫
Vi
f (x)dx

Compare this to Lloyd-Max quantization in one dimension.

45/61

Lloyd’s generalized algorithm

1. Begin with a starting codebook y
(0)
i , i = 1 . . .M. Let k = 0,

D(−1) =∞ and choose a threshold ε.

2. Determine optimal decision regions

V
(k)
i = {x : |x− yi |2 < |x− yj |2 ∀j 6= i}

3. Calculate the distortion

D(k) =
M∑
i=1

∫
V

(k)
i

|x− y
(k)
i |

2f (x)dx

4. If D(k−1) − D(k) < ε stop, otherwise continue.

5. k = k + 1. Determine new optimal reconstruction points as the

centroids of each V
(k−1)
i .

6. Repeat from 2.

46/61

Training data

Usually we don’t know the probability density function f (x) of the source.
One way would be to estimate the density function from a long sequence
from the source (training data).

Instead of doing this, Lloyd’s algorithm can be modified to use the
training data directly.

This variant of the algorithm is usually called the LBG algorithm or
K-means.

47/61

The LBG algorithm

1. Begin with a starting codebook y
(0)
i , i = 1 . . .M and a set of

training vectors xn, n = 1 . . .N. Let k = 0, D(−1) =∞ and choose
a threshold ε.

2. Determine optimal decision regions

V
(k)
i = {xn : |xn − yi |2 < |xn − yj |2 ∀j 6= i}

3. Calculate the distortion D(k) =
M∑
i=1

∑
xn∈V (k)

i

|xn − y
(k)
i |

2

4. If D(k−1) − D(k) < ε stop, otherwise continue.

5. k = k + 1. Determine new optimal reconstruction points as the

average of all vectors in each V
(k−1)
i .

6. Repeat from 2.

48/61

How to choose the starting codebook

Depending on how we choose the starting codebook we can get different
resulting codebooks. A few variants:

I Choose M arbitrary vectors.

I Choose M vectors from the training data.

I Generate several random starting codebooks and choose the one
that gives the lowest distortion.

I PNN (Pairwise Nearest Neighbour).
Start with each training vector as a reconstruction point. In each
step remove the two vectors that are closest to each other and
replace them with the average of the two vectors. Repeat until we
have M vectors.

49/61

Variant of LBG: Splitting

1. Start with a single reconstruction point given by the average of all
training vectors.

2. Double the size of the codebook by adding a small perturbation
vector to each reconstruction vector.

3. Optimize the codebook using the LBG algorithm.

4. If we have M vectors in the codebook we are finished, otherwise
move to step 2.

50/61

Empty regions

What do we do if a region becomes empty during a step in the LBG
algorithm?

Replace the reconstruction vector that has an empty region with a new
vector. A few variants:

1. Choose the new reconstruction point randomly from the region that
has the highest number of training data.

2. Choose the new reconstruction point randomly from the region that
has the largest distortion.

3. Optimize a two level quantizer in the region that has the largest
distortion.

Method 3 is more computationally intensive, but it doesn’t give any
benefits compared to the other methods.

51/61

Advantages and disadvantages

Advantages and disadvantages with vector quantization compared to
scalar quantization.

+ Can utilize the memory of the source.

+ The distortion at a given rate will always be lower when
increasing the number of dimensions, even for a
memoryless source.

– Both the storage space and the time needed to perform
the quantization grows faster than exponentially with the
number of dimensions. Since there is no structure to the
codebook (in the general case) we will have to compare
each signal vector with every reconstruction vector in the
codebook to find the closest one.

52/61

LBG, example

We optimize a scalar quantizer with rate 2 bits/sample (ie 22 = 4 levels)
for our speech signal. If we view this quantizer in two dimensions, where
we quantize each dimension separately, the decision regions and
reconstruction points look like

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SNR is approximately 8.6 dB.

53/61

LBG, example

If we instead optimize a twodimensional vector quantizer for the speech
signal with rate 2 bits/sample (ie 22·2 = 16 vectors in the codebook), the
decision regions and reconstruction points look like

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SNR is approximately 14.4 dB.

54/61

LBG, example

We want to code this image (256× 256 pixels, 8 bits/pixel).

Training data: 10000 pixels viewed as 5000 2-dimensional vectors.
We want a rate of 2 bits/pixel, which means that we have
M = 2RL = 22·2 = 16 reconstruction points.

55/61

LBG, example

The figures show the training vectors in green, and the reconstruction
points and their corresponding decision regions.

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

Starting codebook 1 iteration 10 iterations

56/61

LBG, example

If the image is coded with the resulting quantizer we get the result

Original Quantized

The resulting SNR is 19.25 dB.
The side information (the codebook) requires 16 · 2 · 8 = 256 bits.

57/61

Tree-Structured Vector Quantization

Place the reconstruction vectors as leaves in a binary tree. In each inner
node of the tree we store two test vectors.

When we want to quantize a vector, we start by comparing it to the two
test vectors in the root node. Depending on which test vector that is
closest to the signal we descend along that branch. Keep doing this at
each new node until we reach a leaf, ie a reconstruction point.

The advantage is that we only need to perform 2 · log2 M comparisons
instead of M comparisons (binary search vs full search).

The disadvantage is that we might not end up with the reconstruction
point that is closest, ie the distortion will be a little higher compared to a
full search quantizer. The storage requirements will also be larger, since
we have to store all test vectors too.

A TSVQ can be designed using a variant of the splitting algorithm.

58/61

Gain-shape VQ

A vector x can de described as

x = ||x|| · x

||x||

We construct a scalar quantizer for the length (“gain”) of the vector ||x||
and a vector quantizer for the normalized vector (“shape”) x

||x|| .

Lower complexity compared to a full search vector quantizer, but the
distortion will be a little higher.

59/61

Multistage VQ

Instead of having a single L-dimensional quantizer with rate R
bits/sample, we use k L-dimensional quantizers with rates R1,R2, . . . ,Rk ,
such that R = R1 + R2 + . . .+ Rk .

Start by quantizing x using quantizer 1. The quantization error
x1 = x− Q1(x) is then quantized using quantizer 2. The quantization
error x2 = x1 − Q2(x1) is quantized using quantizer 3, and so on.

The total number of vectors over all k codebooks is
2LR1 + 2LR2 + . . .+ 2LRk .
In comparison, a regular vector quantizer has a codebook of size
2LR = 2LR1 · 2LR2 · . . . · 2LRk .

We get a quantizer with lower complexity (smaller codebook and fewer
comparisons) at the cost of higher distortion.

60/61

Lattice VQ

Generalization of uniform quantization to multiple dimensions. The
reconstruction points are placed in a regular pattern (a lattice) in the
L-dimensional space.

Usually low complexity, since we don’t have to store all reconstruction
points but only a description of the pattern. For most lattices there are
fast methods of finding the closest reconstruction point, so there is no
need to do a full search when quantizing.

Gives lower distortion for the same rate, compared to a uniform scalar
quantizer.

61/61

Lattice quantization, cont.

Example of a lattice quantizer in two dimensions: Hexagonal lattice.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

At fine quantization the hexagonal lattice gives a gain of approximately
0.17 dB, compared to uniform scalar quantization.
The best known lattice is a 24-dimensional lattice that gives a gain of
1.03 dB compared to uniform scalar quantization.

