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Lectures, preliminary program

1. Introduction. Source models, source coding.
2. Huffman coding. Entropy.
3. Golomb codes. Arithmetic coding
4. Lempel-Ziv coding. Lossless image coding.

GIF, PNG, lossless JPEG, JPEG-LS
5. Amplitude continuous source models. Scalar quantization.
6. Vector quantization
7. Linear predictive coding
8. Transform coding. JPEG
9. Transform coding. Subband coding, wavelets. JPEG-2000

10. Psychoacoustics. Audio coding. mp3, AAC, Dolby Digital, Ogg Vorbis
11. Video coding. H.26x, MPEG
12. Video coding. Speech coding. CELP
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Labs

There are 5 labs. You can work alone or in groups of two.
1. Entropy estimation for audio and still images.

Report.
2. Lossless coding of audio and still images.

Report.
3. Quantization.

Report.
4. Linear predictive coding of audio.

Report.
5. Transform coding of still images

Done on one of the scheduled 4h times
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Prerequisites

I Probability theory

I Random processes

I Linear algebra (matrices, vectors)

I Basic calculus

I Basic transform theory (DFT)

I Signal processing (linear systems)

I Matlab
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Course literature

Recommended book: Khalid Sayood, Introduction to Data Compression.
Third, fourth and fifth edition all work. The third edition is available as
an electronic book.

Exercise collection, tables and formulas, see the course web pages.

Electronic books, see the course web pages.

Lab compendium, lecture slides, solutions for Sayood, et c., see the
course web pages.
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What is data compression?

- coding - decoding -
X Y X ′

Y needs less “space” than X .

Lossless coding: X = X ′

Lossy coding: X ≈ X ′
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Example: JPEG coding

Simplified description of a JPEG still image coder:

- Block-based
transform

- Quantization - Source coding -

MUX
--

-

-

Image

Parameters

Size, colour space, meta data, etc

JPG file

The decoder does everything in reverse order.
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Examples

Examples of lossless coding:

General: zip, gzip, bzip, compress

Still images: GIF, PNG, lossless JPEG, JPEG-LS, fax coding

Music: FLAC

Examples of lossy coding:

Still images: JPEG, JPEG 2000

Video: H.261, H.263, H.264, HEVC, MPEG-1 (VideoCD),
MPEG-2 (DVD, DVB), MPEG-4 (DivX, XviD), DV

Audio: MPEG-1 layer 3 (mp3), AC-3 (Dolby Digital), Ogg Vorbis,
AAC, ATRAC (MiniDisc)

Speech: CELP, GSM
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Performance measures

How much compression do we get from our method?

Compression ratio

Ex. Signal to code: grayscale image 256× 256 pixels, 1 byte (8 bits) per
pixels. Suppose the coded signal is 16384 bytes.
The compressions ratio is then 256·256·1

16384 = 4.

Average data rate in bits/symbol (bits/pixel, bits/sample)

Ex. Our image above: 16384·8
256·256 = 2 bits/pixel

For video and audio signals the rate is often given as bits/s.
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Performance measures, cont.

How much distortion do we get?

Human evaluation

Mathematical measures

I Mean square error

I SNR

I SNR weighted to mimic human vision or hearing.
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What is the original?

For audio and images the original signals are sampled and finely
quantized amplitude signals.

The signal can be either scalar (mono sound, grayscale images) or vector
valued (RGB, CMYK, multispectral images, stereo sound, surround
sound).

Even though the original signal is almost always quantized we can still
often use amplitude continuous models for it (lecture 5 and later.)
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Properties to use

What properties of the signal can we use to achieve compression?

I All symbols are not equally common. For instance in a music signal
small amplitude values are more common than large amplitude
values. A good code will have short descriptions for common values
and longer descriptions for uncommon values.

I Dependence between symbols (samples, pixels). For instance in an
image two pixels next to each other usually have almost the same
value. A good coding algorithm will take advantage of this
dependence.

I Properties of the human vision or hearing system. We can remove
information that a human can not see or hear anyway.
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Discrete sources

A source is something that produces a sequence of symbols.

The symbols are elements in a discrete alphabet A = {a1, a2, . . . , aL} of
size L.

We will mostly deal with finite alphabets, but infinite alphabets can also
be used.

In most cases we only have access to a symbol sequence generated by the
source and we will have to model the source from the given sequence.
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Random source models

The source models we will focus on are random models, where we
assume that the symbols are generated by random variables or random
processes.

The simplest random model for a source is a discrete random variable X .

Distribution
Pr(X = ai ) = PX (ai ) = P(ai ) = pi

P(ai ) ≥ 0 , ∀ai
L∑

i=1

P(ai ) = 1
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Random source models, cont.

Better source models: discrete stationary random processes.

A random process Xt can be viewed as a sequence of random variables,
where we get an outcome in each time instance t.

Conditional probabilities:
The output of the source at two times t and s

P(xt , xs) = Pr(Xt = xt ,Xs = xs)

P(xs |xt) =
P(xt , xs)

P(xt)

P(xt , xs) = P(xt) · P(xs |xt)
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Memory sources

Dependence between the signal at different times is called memory.

If Xt and Xt+k are independent for all k 6= 0 the source is memoryless.

For a memoryless source we have:

P(xt , xt+k) = P(xt) · P(xt+k)

P(xt+k |xt) = P(xt+k)
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Markov sources

A Markov source of order k is a memory source with limited memory k
steps back in the sequence.

P(xn|xn−1xn−2 . . .) = P(xn|xn−1 . . . xn−k)

If the alphabet is A = {a1, a2, . . . , aL}, the Markov source can be
described as a state model with Lk states (xn−1 . . . xn−k) where we at
time n move from state (xn−1 . . . xn−k) to state (xn . . . xn−k+1) with
probability P(xn|xn−1 . . . xn−k). These probabilities are called transition
probabilities

The sequence of states is a random process Sn = (Xn,Xn−1 . . . ,Xn−k+1)
with alphabet {s1, s2, . . . , sLk} of size Lk .
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Markov sources, cont.

The Markov source can be described using its starting state and its
transition matrix P. This quadratic matrix has in row r and column k the
transition probability from state sr to sk .

If it is possible to move, with positive probability, from every state to
every other state in a finite number of steps, the Markov source is called
irreducible.

If we at time n are in state si with the probability pni , we can calculate
the probabilities for time n + 1 as

(pn+1
1 pn+1

2 . . . pn+1
Lk ) = (pn1 pn2 . . . pnLk ) · P

A distribution over the states such that the distribution at time n + 1 is
the same as at time n is called a stationary distribution.

If the Markov source is irreducible and aperiodic the stationary
distribution is unique and every starting distribution will approach the
stationary distribution as the time goes to infinity.
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Stationary distribution

We denote the stationary probabilities wi and define the row vector

w̄ = (w1,w2, . . . ,wLk )

If the stationary distribution exists, it can be found as the solution of the
equation system

w̄ = w̄ · P

or
w̄ · (P− I) = 0̄

This equation system is under-determined (if w̄ is a solution then c · w̄ is
also a solution). To find the correct solution we add the equation∑Lk

j=1 wj = 1 (wj are probabilities and therefore their sum is 1).

(If you prefer equation systems with column vectors, you can just
transpose the entire expression and solve w̄T = PT · w̄T instead.)
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Random modeling

Give a long symbol sequence from a source, how do we make a random
model for it?

Relative frequencies: To get the probability for a symbol, count the
number of times that symbol appears and divide by the total number of
symbols in the sequence. In the same way this can be done for pair
probabilities, triple probabilities, conditional probabilities et c.
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Random model from given sequence

Example: Alphabet {a, b}. Given data:
bbbbaabbbaaaaabbbbbabaaabbbb.

To estimate the symbol probabilities we count how often each symbol
appears: a appears 11 times, b 17 times. The estimated probabilities
P(xt) are then:

P(a) =
11

28
, P(b) =

17

28

For pair probabilities and conditional probabilities we instead count how
often the different symbol pairs appear. aa appears 7 times, ab 4 times,
ba 4 times and bb 12 times. The estimated probabilities P(xt , xt+1) and
P(xt+1|xt) are:

P(aa) =
7

27
, P(ab) =

4

27
, P(ba) =

4

27
, P(bb) =

12

27

P(a|a) =
7

11
, P(b|a) =

4

11
, P(a|b) =

4

16
, P(b|b) =

12

16
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Source coding

Source coding means mapping sequences of symbols from a source
alphabet onto binary sequences (called codewords).

The set of all codewords is called a code.

A code where all the codewords have the same length (number of bits) is
called a fixed-length code.

Example: A = {a, b, c , d}
Symbol Code 1 Code 2 Code 3 Code 4 Code 5

a 00 0 0 0 0
b 01 0 1 10 01
c 10 1 00 110 011
d 11 10 11 111 111
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Source coding

Code the sequence abbacddcd using our five codes

Symbol Code 1 Code 2 Code 3 Code 4 Code 5
a 00 0 0 0 0
b 01 0 1 10 01
c 10 1 00 110 011
d 11 10 11 111 111

Code 1: 000101001011111011

Code 2: 000011010110

Code 3: 01100011110011

Code 4: 010100110111111110111

Code 5: 001010011111111011111
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Properties of codes

If you from any sequence of codewords can recreate the original symbol
sequence, the code is called uniquely decodable.

If you can recognize the codewords directly while decoding, the code is
called instantaneous.

If no codeword is a prefix to another codeword, the code is called a prefix
code (in some literature they are called prefix free codes). These codes
are tree codes, ie each codeword can be described as the path from the
root to a leaf in a binary tree.

All prefix codes are instantaneous and all instantaneous codes are prefix
codes.
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Example

Example, A = {a, b, c , d}

Symbol Code 1 Code 2 Code 3 Code 4 Code 5
a 00 0 0 0 0
b 01 0 1 10 01
c 10 1 00 110 011
d 11 10 11 111 111

Code 1 Uniquely decodable, instantaneous (tree code)

Code 2 Not uniquely decodable

Code 3 Not uniquely decodable

Code 4 Uniquely decodable, instantaneous (tree code)

Code 5 Uniquely decodable, not instantaneous
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Uniquely decodable or not?

How can you check if a given code is uniquely decodable or not?
Make a list of all codewords. Examine every pair of elements in the list to
see if any element is a prefix to another element. In that case add the
suffix to the list, if it’s not already in the list. Repeat until one of two
things happen:

1. You find a suffix that is a codeword.

2. You find no more new suffixes to add to the list.

In case 1 the code is not uniquely decodable, in case 2 the code is
uniquely decodable.
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Code performance

How good a code is is determined by its mean data rate R (usually just
rate or data rate) in bits/symbol.

R =
average number of bits per codeword

average number of symbols per codeword

Since we’re doing compression we want R to be as small as possible.

For a random source, there is a theoretical lower bound on the rate.

Note that R is a measure of how good the code is on average over all
possible sequences from the source. It tells us nothing of how good the
code is for a particular sequence.
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Kraft’s inequality, mean codeword length

An instantaneous code (prefix code, tree code) with the codeword
lengths l1, . . . , lL exists if and only if

L∑
i=1

2−li ≤ 1

The inequality also holds for all uniquely decodable codes. It is then
called Kraft-McMillan’s inequality.
Mean codeword length:

l̄ =
L∑

i=1

pi · li [bits/codeword]

if we code one symbol with each codeword we have

R = l̄
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Entropy as a lower bound

There is a lower bound on the mean codeword length of a uniquely
decodable code:

l̄ ≥ −
L∑

i=1

pi · log2 pi = H(Xt)

H(Xt) is the entropy of the source (more on entropy later).
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Entropy as a lower bound, cont

Proof of l̄ ≥ H(Xt)

H(Xt)− l̄ = −
L∑

i=1

pi · log2 pi −
L∑

i=1

pi · li =
L∑

i=1

pi · (log2

1

pi
− li )

=
L∑

i=1

pi · (log2

1

pi
− log2 2li ) =

L∑
i=1

pi · log2

2−li

pi

≤ 1

ln 2

L∑
i=1

pi · (
2−li

pi
− 1) =

1

ln 2
(

L∑
i=1

2−li −
L∑

i=1

pi )

≤ 1

ln 2
(1− 1) = 0

where we used the inequality ln x ≤ x − 1 and Kraft-McMillan’s
inequality.
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Optimal codes

A code is called optimal if no other code exists (for the same probability
distribution) that has a lower mean codeword length.

There are of course several codes with the same mean codeword length.
The simplest example is to just switch all ones to zeros and all zeros to
ones in the codewords.

Even codes with different sets of codeword lengths can have the same
mean codeword length.
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Upper bound for optimal codes

Given that we code one symbol at a time, an optimal code satisfies
l̄ < H(Xt) + 1

Let li = d− log pie. We have that − log pi ≤ d− log pie < − log pi + 1.

L∑
i=1

2−li =
L∑

i=1

2−d− log pie

≤
L∑

i=1

2log pi

=
L∑

i=1

pi = 1

Kraft’s inequality is satisfied, therefore a tree code with the given
codeword lengths exists.
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Upper bound for optimal codes, cont.

What’s the mean codeword length of this code?

l̄ =
L∑

i=1

pi · li =
L∑

i=1

pi · d− log pie

<

L∑
i=1

pi · (− log pi + 1)

= −
L∑

i=1

pi · log pi +
L∑

i=1

pi = H(Xt) + 1

An optimal code can’t be worse than this code, then it wouldn’t be
optimal. Thus, the mean codeword length for an optimal code also
satisfies l̄ < H(Xt) + 1.

NOTE: If pi = 2−ki ,∀i for integers ki , we can construct a code with
codeword lengths ki and l̄ = H(Xt).
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Huffman coding

A simple method for constructing optimal tree codes.

Start with symbols as leaves.

In each step connect the two least probable nodes to an inner node. The
probability for the new node is the sum of the probabilities of the two
original nodes. If there are several nodes with the same probability to
choose from it doesn’t matter which ones we choose.

When we have constructed the whole code tree, we create the codewords
by setting 0 and 1 on the branches in each node. Which branch that is
set to 0 and which that is set to 1 doesn’t matter.
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Extended codes

For small alphabets with skewed distributions, or sources with memory, a
Huffman code can be relatively far from the entropy bound. This can be
solved by extending the source, ie by coding multiple symbols with each
codeword.

If we code n symbols with each codeword, and the code has the mean
codeword length l̄ the rate will be

R =
l̄

n

The maximal redundancy of an optimal code (the difference between the
rate and the entropy) is 1

n when we code n symbols at a time.
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Side information

So far we have only considered the rate R of the code to determine how
good or bad it is. In a practical application we also have to consider that
we have to transmit side information for the receiver to be able to decode
the sequence.

For instance we might have to tell the receiver what alphabet is used,
what the code tree looks like and how long the decoded sequence should
be. Exactly what side information needs to be transmitted depends on
the situation.

A straightforward method of sending a code tree: For each symbol in the
alphabet we first send the codeword length and then the actual codeword.
With an alphabet of size L we will need L · dlog Le+

∑
i li extra bits.
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Side information, cont.

Given the codeword lengths (and hence the rate) it’s usually not
important exactly what codewords that are used. If both the coder and
the decoder uses the same algorithm to construct a code given the
codeword lengths, we only need to send the lengths.
In practice the coder will use the Huffman algorithm to construct an
optimal code. The coder notes the codeword lengths, throws away the
code and constructs a new code with these lengths. The new code will
have the same rate as the first code. The decoder can construct the
same code. In this case we only need

L · dlog Le

bits of side information.

If the amount of data to be sent is large the side information will only
have a small affect on the total data rate, but if the amount of data is
small the side information can be a substantial portion of the total rate.
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Runlength coding

Sometimes we have sources that produce long partial sequences
consisting of the same symbol. It can then be practical to view the
sequence as consisting of runs instead of symbols. A run is a tuple
describing what symbol that is in the run and how long the run is.

For example, the sequence

aaaabbbbbbbccbbbbaaaa

can be described as

(a, 4)(b, 7)(c , 2)(b, 4)(a, 4)

Basically we have switched to another alphabet than the original one.

The gain is that it might be easier to find a good code for the new
alphabet, and that it’s easier to take advantage of the memory of the
source.
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Golomb codes

A = {0, 1, 2, . . .}

Choose the parameter m. In practice, m is usually chosen to be an
integer power of two, but it can be any positive integer.

Represent the integer n with q = b nmc and r = n − qm.

Code q with a unary code.

If m is an integer power of two, code r binary with logm bits.

If m is not an integer power of two:
0 ≤ r < 2dlogme −m Code r binary with blogmc bits

2dlogme −m ≤ r ≤ m − 1 Code r + 2dlogme −m
binary with dlogme bits
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Examples of Golomb codes

Symbol m = 1 m = 2 m = 3 m = 4
0 0 0 0 0 0 0 00
1 10 0 1 0 10 0 01
2 110 10 0 0 11 0 10
3 1110 10 1 10 0 0 11
4 11110 110 0 10 10 10 00
5 111110 110 1 10 11 10 01
6 1111110 1110 0 110 0 10 10
...

...
...

...
...

Golomb codes are optimal for distributions of the type

p(i) = qi · (1− q) ; 0 < q < 1

if we choose m = d− 1
log q e

Golomb codes are for instance used in the image coding standard
JPEG-LS and in the video coding standard H.264.
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Example, image coding

Original image, 768× 512 pixels, 8 bits per pixel
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Huffman coding

We use the histogram (ie the relative frequencies) as an estimate of the
probability distribution over the pixel values.

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

A Huffman code for this distribution will code the image using 2954782
bits, plus 1280 bits of side information. This gives us a rate of 7.51
bits/pixel.
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Huffman coding of pixel differences

To take advantage of the memory we take the difference between a pixel
and the pixel above it. Pixels outside the image area are assumed to be
128.

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10

4

A Huffman code for this distribution will code the image using 1622787
bits, plus 2075 bits of side information. This gives us a rate of 4.13
bits/pixel.
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Golomb coding of pixel differences I

In order to do Golomb coding of the pixel differences we need to have an
alphabet of non-negative values. For example we can code the absolute
value of the differences using a Golomb code and then send a sign bit for
each non-zero value.

−50 0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10
x 10

4

The best Golomb code for this distribution is m = 3. This gives us
1438806 bits, 317104 sign bits and 8 bits of side information. The rate is
4.47 bits/pixel.
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Golomb coding of pixel differences II

Another variant is to represent positive values as even numbers and
negative values as odd numbers.

−50 0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8
x 10

4

The best Golomb code for this distribution is m = 3. This gives us
1760618 bits and 8 bits of side information. The rate is 4.48 bits/pixel.
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Information and entropy

X is a discrete random variable.

Distribution
pi = P(ai ) = Pr(X = ai )

Self information of the outcomes

i(ai ) = − log pi

The logarithm can be taken in any base. For practical reasons, base 2 is
usually used. The unit is then called bits. We can then easily compare
the entropy with the rate of a binary code.

The lower the probability of an outcome is, the larger the information of
the outcome is

pi → 0 =⇒ i(ai )→∞

pi = 1 =⇒ i(ai ) = 0



47/91

Entropy

The mean value of the information is called entropy.

H(X ) =
L∑

i=1

pi · i(ai ) = −
L∑

i=1

pi · log pi

The entropy can be seen as a measure of the average information in X ,
or a measure of the uncertainty of X .

0 ≤ H(X ) ≤ log L

The entropy is maximized when all outcomes are equally probable.

If any one of the outcomes has probability 1 (and thus all the other
outcomes have probability 0) the entropy is 0, ie there is no uncertainty.
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Entropy, cont.

Two random variables X and Y with alphabets A and B.

PXY (ai , bj) = PX (ai ) · PY |X (bj |ai ) = PY (bj) · PX |Y (ai |bj)

Conditional entropy

H(Y |X ) = −
∑
i,j

PXY (ai , bj) · logPY |X (bj |ai )

H(Y |X ) ≤ H(Y ) with equality if X and Y are independent.

Block entropy

H(X ,Y ) = −
∑
i,j

PXY (ai , bj) · logPXY (ai , bj)

H(X ,Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y )
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Entropy of sources

Source Xt (stationary random process)
First order entropy of the source

H(Xt) =
L∑

i=1

pi · i(ai ) = −
L∑

i=1

pi · log pi

Conditional entropy
H(Xt |Xt−1) ≤ H(Xt)

with equality if Xt is memoryless.

Second order entropy

H(Xt−1,Xt) = H(Xt−1) + H(Xt |Xt−1) ≤ 2 · H(Xt)

n-th order entropy

H(X1, . . . ,Xn) = H(X1)+H(X2|X1)+ . . .+H(Xn|X1 . . .Xn−1) ≤ n ·H(Xt)
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Entropy of sources, cont.

Entropy of the source (also called entropy rate).

lim
n→∞

1

n
H(X1 . . .Xn) = lim

n→∞
H(Xn|X1 . . .Xn−1)

For a memoryless source the entropy rate is equal to the first order
entropy.

For a Markov source of order k the entropy rate is

H(Xt |Xt−1 . . .Xt−k)

The entropy rate gives a lower bound on the data rate of a uniquely
decodable code for the source.
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Problems with Huffman coding

Huffman coding is optimal in theory, but it can be impractical to use for
skewed distributions and/or when extending the source.
Ex: A = {a, b, c}, P(a) = 0.95,P(b) = 0.02,P(c) = 0.03

The entropy of the source is approximately 0.3349. The mean codeword
length of a Huffman code is 1.05 bits/symbol, ie more than 3 times the
entropy. If we want the rate to be no more than 5% larger than the
entropy we have to extend the source and code 8 symbols at a time. This
gives a Huffman code with 38 = 6561 codewords.

We would like to have coding method where we can directly find the
codeword for a given sequence, without having to determine the
codewords for all possible sequences. One way of doing this is arithmetic
coding.
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Arithmetic coding

Suppose that we have a source Xt taking values in the alphabet
{1, 2, . . . , L}. Suppose that the probabilities for all symbols are strictly
positive: P(i) > 0, ∀i .

The cumulative distribution function F (i) is defined as

F (i) =
∑
k≤i

P(k)

F (i) is a step function where the step in k has the height P(k).

Example:
A = {1, 2, 3}
P(1) = 0.5, P(2) = 0.3, P(3) = 0.2
F (0) = 0, F (1) = 0.5, F (2) = 0.8, F (3) = 1
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Arithmetic coding

Suppose that we want to code a sequence x = x1, x2, . . . , xn.
Start with the whole probability interval [0, 1). In each step j divide the
interval proportional to the cumulative distribution F (i) and choose the
subinterval corresponding to the symbol xj that is to be coded.

If we have a memory source the intervals are divided according to the
conditional cumulative distribution function.

Each symbol sequence of length n uniquely identifies a subinterval. The
codeword for the sequence is a number in the interval. The number of
bits in the codeword depends on the interval size, so that a large interval
(ie a sequence with high probability) gets a short codeword, while a small
interval gives a longer codeword.
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Iterative algorithm

Suppose that we want to code a sequence x = x1, x2, . . . , xn. We denote
the lower limit in the corresponding interval by l (n) and the upper limit by
u(n). The interval generation is the given iteratively by{

l (j) = l (j−1) + (u(j−1) − l (j−1)) · F (xj − 1)
u(j) = l (j−1) + (u(j−1) − l (j−1)) · F (xj)

Starting values are l (0) = 0 and u(0) = 1.

The interval size is of course equal to the probability of the sequence

u(n) − l (n) = P(x)
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Codeword

The codeword for an interval is the shortest bit sequence b1b2 . . . bk such
that the binary number 0.b1b2 . . . bk is in the interval and that all other
numbers staring with the same k bits are also in the interval.
Given a binary number a in the interval [0, 1) with k bits 0.b1b2 . . . bk .
All numbers that have the same k first bits as a are in the interval
[a, a + 1

2k
).

A necessary condition for all of this interval to be inside the interval
belonging to the symbol sequence is that it is less than or equal in size to
the symbol sequence interval, ie

P(x) ≥ 1

2k
⇒ k ≥ d− logP(x)e

We can’t be sure that it is enough with d− logP(x)e bits, since we can’t
place these intervals arbitrarily. We can however be sure that we need at
most one extra bit The codeword length l(x) for a sequence x is thus
given by

l(x) = d− logP(x)e or l(x) = d− logP(x)e+ 1
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Average codeword length

l̄ =
∑
x

P(x) · l(x) ≤
∑
x

P(x) · (d− logP(x)e+ 1)

<
∑
x

P(x) · (− logP(x) + 2) = −
∑
x

P(x) · logP(x) + 2 ·
∑
x

P(x)

= H(X1X2 . . .Xn) + 2

The resulting data rate is thus bounded by

R <
1

n
H(X1X2 . . .Xn) +

2

n

This is a little worse than the rate for an extended Huffman code, but
extended Huffman codes are not practical for large n. The complexity of
an arithmetic coder, on the other hand, is independent of how many
symbols n that are coded. In arithmetic coding we only have to find the
codeword for a particular sequence and not for all possible sequences.
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Memory sources

When doing arithmetic coding of memory sources, we let the interval
division depend on earlier symbols, ie we use different F in each step
depending on the value of earlier symbols.

For example, if we have a binary Markov source Xt of order 1 with
alphabet {1, 2} and transition probabilities P(xt |xt−1)

P(1|1) = 0.8, P(2|1) = 0.2, P(1|2) = 0.1, P(2|2) = 0.9

we will use two conditional cumulative distribution functions F (xt |xt−1)

F (0|1) = 0, F (1|1) = 0.8, F (2|1) = 1

F (0|2) = 0, F (1|2) = 0.1, F (2|2) = 1

For the first symbol in the sequence we can either choose one of the two
distributions or use a third cumulative distribution function based on the
stationary probabilities.
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Practical problems

When implementing arithmetic coding we have a limited precision and
can’t store interval limits and probabilities with aribtrary resolution.

We want to start sending bits without having to wait for the whole
sequence with n symbols to be coded.

One solution is to send bits as soon as we are sure of them and to rescale
the interval when this is done, to maximally use the available precision.

If the first bit in both the lower and the upper limits are the same then
that bit in the codeword must also take this value. We can send that bit
and thereafter shift the limits left one bit, ie scale up the interval size by
a factor 2.
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Fixed point arithmetic

Arithmetic coding is most often implemented using fixed point arithmetic.

Suppose that the interval limits l and u are stored as integers with m bits
precision and that the cumulative distribution function F (i) is stored as
integers with k bits precision. The algorithm can then be modified to

l (j) = l (j−1) + b (u(j−1) − l (j−1) + 1)F (xj − 1)

2k
c

u(j) = l (j−1) + b (u(j−1) − l (j−1) + 1)F (xj)

2k
c − 1

Starting values are l (0) = 0 and u(0) = 2m − 1.

Note that previosuly when we had continuous intervals, the upper limit
pointed to the first number in the next interval. Now when the intervals
are discrete, we let the upper limit point to the last number in the
current interval.
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Interval scaling

The cases when we should perform an interval scaling are:

1. The interval is completely in [0, 2m−1 − 1], ie the most significant bit
in both l (j) and u(j) is 0. Shift out the most significant bit of l (j) and
u(j) and send it. Shift a 0 into l (j) and a 1 into u(j).

2. The interval is completely in [2m−1, 2m − 1], ie the most significant
bit in both l (j) and u(j) is 1. Shift out the most significant bit of l (j)

and u(j) and send it. Shift a 0 into l (j) and a 1 into u(j). The same
operations as in case 1.

When we have coded our n symbols we finish the codeword by sending all
m bits in l (n). The code can still be a prefix code with fewer bits, but the
implementation of the decoder is much easier if all of l is sent. For large
n the extra bits are neglible. We probably need to pack the bits into
bytes anyway, which might require padding.
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More problems

Unfortunately we can still get into trouble in our algorithm, if the first bit
of l always is 0 and the first bit of u always is 1. In the worst case
scenario we might end up in the situation that l = 011 . . . 11 and
u = 100 . . . 00. Then our algorithm will break down.

Fortunately there are ways around this. If the first two bits of l are 01 and
the first two bits of u are 10, we can perform a bit shift, without sending
any bits of the codeword. Whenever the first bit in both l and u then
become the same we can, besides that bit, also send one extra inverted
bit because we are then sure of if the codeword should have 01 or 10.
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Interval scaling

We now get three cases

1. The interval is completely in [0, 2m−1 − 1], ie the most significant bit
in both l (j) and u(j) is 0. Shift out the most significant bit of l (j) and
u(j) and send it. Shift a 0 into l (j) and a 1 into u(j).

2. The interval is completely in [2m−1, 2m − 1], ie the most significant
bit in both l (j) and u(j) is 1. The same operations as in case 1.

3. We don’t have case 1 or 2, but the interval is completely in
[2m−2, 2m−1 + 2m−2 − 1], ie the two most significant bits are 01 in
l (j) and 10 in u(j). Shift out the most significant bit from l (j) and
u(j). Shift a 0 into l (j) and a 1 into u(j). Invert the new most
significant bit in l (j) and u(j). Don’t send any bits, but keep track of
how many times we do this kind of rescaling. The next time we do a
rescaling of type 1, send as many extra ones as the number of type 3
rescalings. In the same way, the next time we do a rescaling of type
2 we send as many extra zeros as the number of type 3 rescalings.
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Demands on the precision

We must use a datatype with at least m + k bits to be able to store
partial results of the calculations.

We also see that the smallest interval we can have without performing a
rescaling is of size 2m−2 + 1, which for instance happens when
l (j) = 2m−2 − 1 and u(j) = 2m−1. For the algorithm to work, u(j) can
never be smaller than l (j) (the same value is allowed, because when we
do a rescaling we shift zeros into l and ones into u). In order for this to
be true, all intervals of the fixed point version of the cumulative
distribution function must fulfill (with a slight overestimation)

F (i)− F (i − 1) ≥ 2k−m+2 ; i = 1, . . . , L
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Decoding

Start the decoder in the same state (ie l = 0 and u = 2m − 1) as the
coder. Introduce t as the m first bits of the bit stream (the codeword).
At each step we calculate the number

b (t − l + 1) · 2k − 1

u − l + 1
c

Compare this number to F to see what probability interval this
corresponds to. This gives one decoded symbol. Update l and u in the
same way that the coder does. Perform any needed shifts (rescalings).
Each time we rescale l and u we also update t in the same way (shift out
the most significant bit, shift in a new bit from the bit stream as new
least significant bit. If the rescaling is of type 3 we invert the new most
significant bit.) Repeat until the whole sequence is decoded.

Note that we need to send the number of symbols in the codeword as
side information, so the decoder knows when to stop decoding.
Alternatively we can introduce an extra symbol into the alphabet, with
lowest possible probability, that is used to mark the end of the sequence.
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Lempel-Ziv coding

Code symbol sequences using references to previous data in the sequence.

There are two main types:

I Use a history buffer, code a partial sequence as a pointer to when
that particular sequence last appeared (LZ77).

I Build a dictionary of all unique partial sequences that appears. The
codewords are references to earlier words (LZ78).
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Lempel-Ziv coding, cont.

The coder and decoder don’t need to know the statistics of the source.
Performance will asymptotically reach the entropy rate. A coding method
that has this property is called universal.

Lempel-Ziv coding in all its different variants are the most popular
methods for file compression and archiving, eg zip, gzip, ARJ and
compress.

The image coding standards GIF and PNG use Lempel-Ziv.

The standard V.42bis for compression of modem traffic uses Lempel-Ziv.
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LZ77

Lempel and Ziv 1977.

View the sequence to be coded through a sliding window. The window is
split into two parts, one part containing already coded symbols (search
buffer) and one part containing the symbols that are about to coded next
(look-ahead buffer).

Find the longest sequence in the search buffer that matches the sequence
that starts in the look-ahead buffer. The codeword is a triple < o, l , c >
where o is a pointer to the position in the search buffer where we found
the match (offset), l is the length of the sequence, and c is the next
symbol that doesn’t match. This triple is coded using a fixlength
codeword. The number of bits required is

dlog Se+ dlog(W + 1)e+ dlog Le

where S is the size of the search buffer, W is the size of the look-ahead
buffer and L is the alphabet size.
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Improvements of LZ77

It is unnecessary to send a pointer and a length if we don’t find a
matching sequence. We only need to send a new symbol if we don’t find
a matching sequence. Instead we can use an extra flag bit that tells if we
found a match or not. We either send < 1, o, l > or < 0, c >. This
variant of LZ77 is called LZSS (Storer and Szymanski, 1982).

Depending on buffer sizes and alphabet sizes it can be better to code
short sequences as a number of single symbols instead of as a match.

In the beginning, before we have filled up the search buffer, we can use
shorter codewords for o and l .

All o, l and c are not equally probable, so we can get even higher
compression by coding them using variable length codes (eg Huffman
codes).



69/91

Buffer sizes

In principle we get higher compression for larger search buffers. For
practical reasons, typical search buffer sizes used are around 215 − 216.

Very long match lengths are usually not very common, so it is often
enough to let the maximum match length (ie the look-ahead buffer size)
be a couple of hundred symbols.

Example: LZSS coding of a text file, buffer size 32768, match lengths
3-130 (128 possible values). Histogram for match lengths:
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DEFLATE

Deflate is a variant of LZ77 that uses Huffman coding. It is the method
used in zip, gzip and PNG.

Data to be coded are bytes.

The data is coded in blocks of arbitrary size (with the exception of
uncompressed blocks that can be no more than 65536 bytes).

The block is either sent uncompressed or coded using LZ and Huffman
coding.

The match lengths are between 3 and 258. Offset can be between 1 and
32768.

The Huffman coding is either fixed (predefined codewords) or dynamic
(the codewords are sent as side information).

Two Huffman codes are used: one code for single symbols (literals) and
match lengths and one code for offsets.
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Symbols and lengths

The Huffman code for symbols and lengths use the alphabet
{0, 1, . . . , 285} where the values 0-255 are used for symbols, the value
256 marks the end of a block and the values 257-285 are used to code
lengths together with extra bits:

extra extra extra
bits length bits length bits length

257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66
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Offset

The Huffman code for offset uses the alphabet {0, . . . , 29}. Extra bits
are used to exactly specify offset 5-32768

extra extra extra
bits offset bits offset bits offset

0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 24 11 4097-6144
5 1 7,8 15 6 193-256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289-16384
8 3 17-24 18 8 513-768 28 13 16385-24576
9 3 25-32 19 8 769-1024 29 13 24577-32768
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Fixed Huffman codes

Codewords for the symbol/length alphabet:

value number of bits codewords
0 - 143 8 00110000 - 10111111

144 - 255 9 110010000 - 111111111
256 - 279 7 0000000 - 0010111
280 - 287 8 11000000 - 11000111

The reduced offset alphabet is coded with a five bit fixlength code.

For example, a match of length 116 at offset 12 is coded with the
codewords 11000000 0001 and 00110 11.
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Dynamic Huffman codes

The codeword lengths for the different Huffman codes are sent as extra
information.

To get even more compression, the sequence of codeword lengths are
runlength coded and then Huffman coded (!). The codeword lengths for
this Huffman code are sent using a three bit fixlength code.

The algorithm for constructing codewords from codeword lengths is
specified in the standard.
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Coding

What is standardized is the syntax of the coded sequence and how it
should be decoded, but there is no specification for how the coder should
work. There is a recommendation about how to implement a coder.

The search for matching sequences is not done exhaustively through the
whole history buffer, but rather with hash tables. A hash value is
calculated from the first three symbols next in line to be coded. In the
hash table we keep track of the offsets where sequences with the same
hash value start (hopefully sequences where the first three symbol
correspond, but that can’t be guaranteed). The offsets that have the
same hash value are searched to find the longest match, starting with the
most recent addition. If no match is found the first symbol is coded as a
literal. The search depth is also limited to speed up the coding, at the
price of a reduction in compressionen. For instance, the compression
parameter in gzip controls how long we search.
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Documents

See also:
ftp://ftp.uu.net/pub/archiving/zip/

ftp://ftp.uu.net/graphics/png/

http://www.ietf.org/rfc/rfc1950.txt

http://www.ietf.org/rfc/rfc1951.txt

http://www.ietf.org/rfc/rfc1952.txt

http://www.ietf.org/rfc/rfc2083.txt
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LZ78

Lempel and Ziv 1978.

A dictionary of unique sequences is built. The size of the dictionary is S .
In the beginning the dictionary is empty, apart from index 0 that means
“no match”.

Every new sequence that is coded is sent as the tuple < i , c > where i is
the index in the dictionary for the longest matching sequence we found
and c is the next symbol of the data that didn’t match. The matching
sequence plus the next symbol is added as a new word to the dictionary.

The number of bits required is

dlog Se+ dlog Le

The decoder can build an identical dictionary.
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LZ78, cont.

What to do when the dictionary becomes full? There are a few
alternatives:

I Throw away the dictionary and start over.

I Keep coding with the dictionary, but only send index and do not add
any more words.

I As above, but only as long as the compressionen is good. If it
becomes too bad, throw away the dictionary and start over. In this
case we might have to add an extra symbol to the alphabet that
informs the decoder to start over.
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LZW

LZW is a variant of LZ78 (Welch, 1984).

Instead of sending a tuple < i , c > we only send index i in the dictionary.
For this to work, the starting dictionary must contain words of all single
symbols in the alphabet.

Find the longest matching sequence in the dictionary and send the index
as a new codeword. The matching sequence plus the next symbol is
added as a new word to the dictionary.
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GIF (Graphics Interchange Format)

Two standards: GIF87a and GIF89a.

A virtual screen is specified. On this screen rectangular images are
placed. For each little image we send its position and size.

A colour table of maximum 256 colours is used. Each subimage can have
its own colour table, but we can also use a global colour table.

The colour table indices for the pixels are coded using LZW. Two extra
symbols are added to the alphabet: ClearCode, which marks that we
throw away the dictionary and start over, and EndOfInformation, which
marks that the code stream is finished.

Interlace: First lines 0, 8, 16, . . . are sent, then lines 4, 12, 20, . . . then
lines 2, 6, 10, . . . and finally lines 1, 3, 5, . . .

In GIF89a things like animation and transparency are added.
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PNG (Portable Network Graphics)

Partly introduced as a replacement for GIF because of patent issues with
LZW (these patents have expired now).

Uses deflate for compression.

Colour depth up to 3× 16 bits.

Alpha channel (general transparency).

Can exploit the dependency between pixels (do a prediction from
surrounding pixels and code the difference between the predicted value
and the real value), which makes it easier to compress natural images.
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PNG, cont.

Supports 5 different predictors (called filters):

0 No prediction

1 Îij = Ii,j−1

2 Îij = Ii−1,j

3 Îij = b(Ii−1,j + Ii,j−1)/2c
4 Paeth (choose the one of Ii−1,j , Ii,j−1 and Ii−1,j−1 which is closest to

Ii−1,j + Ii,j−1 − Ii−1,j−1)
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Lossless JPEG

JPEG is normally an image coding method that gives distortion, but
there is also a lossless mode in the standard.

The pixels are coded row-wise from the top down.

The pixel Iij on position (i , j) is predicted from neighbouring pixels.
There are 7 predictors to choose from:
1. Îij = Ii−1,j
2. Îij = Ii,j−1
3. Îij = Ii−1,j−1
4. Îij = Ii,j−1 + Ii−1,j − Ii−1,j−1
5. Îij = Ii,j−1 + b(Ii−1,j − Ii−1,j−1)/2c
6. Îij = Ii−1,j + b(Ii,j−1 − Ii−1,j−1)/2c
7. Îij = b(Ii,j−1 + Ii−1,j)/2c
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Lossless JPEG, cont.

The difference dij = Iij − Îij is coded either by an adaptive arithmetic
coder, or using a Huffman code.
Huffman coding is not performed directly on the differences. Instead
cathegories

kij = dlog(|dij |+ 1)e

are formed. Statistics for the cathegories are calculated and a Huffman
tree is constructed.
The codeword for a difference dij consists of the Huffman codeword for
kij plus kij extra bits used to exactly specify dij .

kij dij extra bits
0 0 −
1 −1, 1 0, 1
2 −3,−2, 2, 3 00, 01, 10, 11
3 −7, . . . ,−4, 4, . . . , 7 000, . . . , 011, 100, . . . , 111
...

...
...
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JPEG-LS

Standard for lossles and near lossless coding of images. Near lossless
means that we allow the pixel values of the decoded image to be a little
different from the original pixels.

The pixels are coded row-wise from the top down.

When pixel (i , j) is to be coded you first look at the surrounding pixels in
position (i , j − 1), (i − 1, j − 1), (i − 1, j) and (i − 1, j + 1). A context is
formed by first calculating the gradients

D1 = Ii−1,j+1 − Ii−1,j

D2 = Ii−1,j − Ii−1,j−1

D3 = Ii−1,j−1 − Ii,j−1
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JPEG-LS, cont.

The gradients Dk are quantized to three integers Qk such that
−4 ≤ Qk ≤ 4. The quantizer bounds can be chosen by the coder. Each
Qk takes 9 possible values, which means that we have 729 possible
combinations. A pair of combinations with inverted signs counts as the
same context which finally gives us 365 different contexts.

A median edge detector (MED) prediction of Iij is done according to:

If Ii−1,j−1 ≥ max(Ii,j−1, Ii−1,j)⇒ Îij = min(Ii,j−1, Ii−1,j)

if Ii−1,j−1 ≤ min(Ii,j−1, Ii−1,j)⇒ Îij = max(Ii,j−1, Ii−1,j)

Otherwise: Îij = Ii,j−1 + Ii−1,j − Ii−1,j−1

For each context q we keep track if the prediction has a systematic error,
if that is the case the prediction is adjusted a little in the correct
direction.
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JPEG-LS, cont.

The difference between the real pixel value and the predicted value
dij = Iij − Îij is coded using a Golomb code with parameter m = 2kq . For
each context q we keep track of the best Golomb code, and each kq is
constantly adjusted during the coding process.

The coder also detects if we get long runs of the same value on a row. In
that case the coder switches to coding run-lengths instead.
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Test image, grayscale

Original image, 768× 512 pixels, 8 bits per pixel
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Test image, colour

Original image, 768× 512 pixels, 24 bits per pixel
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Coding with lossless JPEG

Number of bits per pixel when coding the two test images using different
predictors.

grayscale colour
Predictor 1 4.35 13.15
Predictor 2 4.17 12.58
Predictor 3 4.55 13.79
Predictor 4 4.26 12.83
Predictor 5 4.15 12.51
Predictor 6 4.09 12.33
Predictor 7 4.00 12.07



91/91

Coding results

Method grayscale colour
Huffman 7.51
Huffman, difference data 4.13
Golomb, difference data, var. I 4.47
Golomb, difference data, var. II 4.48
Lossless JPEG 4.00 12.07
JPEG-LS 3.54 10.60
GIF 7.07
PNG 3.97 11.36


