Solutions to Written Exam in Image and Audio Compression TSBK38

14th August 2023

1 See the course literature.

2 See the course literature.

3 a) See the course literature.
b) See the course literature.

4 a) See the course literature.
b) See the course literature.
c) See the course literature.

5 a) See the course literature.
b) See the course literature.

6 a) The theoretical limit is given by entropy rate of the source, which for a memoryless source is given by the entropy of single symbols, in this case approximately 2.1682 bits/symbol.
b) One Huffman code (there are other) is given by

symbol	codeword	codeword length
a	0	1
b	100	3
c	110	3
d	111	3
e	1010	4
f	1011	4

The code has a rate of 2.21 bits/symbol.
$7 \quad$ See the course literature.

8 The interval corresponding to the sequence is [$\begin{array}{ll}0.53 & 0.5375)\end{array}$.
We need at least $\lceil-\log 0.0075\rceil=8$ bits in the codeword, maybe one more.
Write the two interval limits in base 2:

$$
\begin{aligned}
0.53 & =0.1000011110101 \ldots \\
0.5375 & =0.1000100110011 \ldots
\end{aligned}
$$

The smallest 8 bit number inside this interval is 0.10001000 . All numbers starting with these bits are also inside the interval (ie they are smaller than the upper limit), which means that 8 bits are enough.

The codeword is $\mathbf{1 0 0 0 1 0 0 0}$.

9 The number of levels in the quantizer is

$$
M=\frac{4}{\Delta}=4 \cdot 2^{k}=2^{k+2}
$$

We get $M / 2$ symbols with probability $\Delta / 3$ and $M / 2$ symbols with probability $\Delta / 6$. The rate will then be

$$
\begin{aligned}
R & =H(\hat{X})=\frac{M}{2}\left(-\frac{\Delta}{3} \log \frac{\Delta}{3}-\frac{\Delta}{6} \log \frac{\Delta}{6}\right)= \\
& =\frac{2}{3} \log \left(3 \cdot 2^{k}\right)+\frac{1}{3} \log \left(6 \cdot 2^{k}\right)=\log 3+\frac{1}{3}+k
\end{aligned}
$$

Since the distribution is constant in each quantization interval, the distortion is given by

$$
D=\frac{\Delta^{2}}{12}=\frac{2^{-2 k}}{12} \Longrightarrow k=-\frac{1}{2} \log 12 D
$$

which finally gives us the rate R as a function of the distortion D

$$
R=\log 3+\frac{1}{3}-\frac{1}{2} \log 12 D=\frac{1}{3}+\frac{1}{2} \log \frac{3}{4 D}
$$

10 Fine quantization means we can use the approximation $\hat{X}_{i, j} \approx X_{i, j}$. The prediction error is approximately gaussian.
We assume that the arithmetic coder gives a rate equal to the entropy of the quantized prediction error.

Optimal choices of a_{1} and a_{2} are given by

$$
\left(\begin{array}{ll}
8.70 & 8.09 \\
8.09 & 8.70
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{8.27}{8.27} \Rightarrow\binom{a_{1}}{a_{2}} \approx\binom{0.4926}{0.4926}
$$

Resulting prediction error variance

$$
\sigma_{p}^{2} \approx 0.5531
$$

Optimal choices of b_{1} and b_{2} are given by

$$
\left(\begin{array}{ll}
8.70 & 7.65 \\
7.65 & 8.70
\end{array}\right)\binom{b_{1}}{b_{2}}=\binom{8.27}{8.09} \Rightarrow\binom{b_{1}}{b_{2}} \approx\binom{0.5860}{0.4146}
$$

Resulting prediction error variance

$$
\sigma_{q}^{2} \approx 0.4996
$$

Since the second predictor gives a lower prediction error variance, it will give a lower distortion at the given rate.

The resulting distortion is given by

$$
D \approx \frac{\pi e}{6} \cdot \sigma_{q}^{2} \cdot 2^{-2 \cdot 6} \approx 1.7359 \cdot 10^{-4}
$$

and signal-to-noise ratio

$$
10 \cdot \log _{10} \frac{8.70}{D} \approx 47.0 \mathrm{~dB}
$$

11 The transform matrix for a 4-point DCT is

$$
\mathbf{A}=\left(\begin{array}{rrrr}
0.5 & 0.5 & 0.5 & 0.5 \\
a & b & -b & -a \\
0.5 & -0.5 & -0.5 & 0.5 \\
b & -a & a & -b
\end{array}\right)
$$

where $a=\frac{1}{\sqrt{2}} \cos \frac{\pi}{8} \approx 0.6533$ and $b=\frac{1}{\sqrt{2}} \cos \frac{3 \pi}{8} \approx 0.2706$.
The variances for the four transform components are

$$
\sigma_{0}^{2} \approx 12.635, \sigma_{1}^{2} \approx 0.8962, \sigma_{2}^{2} \approx 0.3150, \sigma_{3}^{2} \approx 0.1538
$$

To achieve the average rate 1.75 we should allocate $4 \cdot 1.75=7$ bits in total.

The allocation that minimizes the average distortion is $R_{0}=4, R_{1}=$ $2, R_{2}=1, R_{3}=0$. The resulting average distortion is
$D \approx \frac{1}{4}(0.09497 \cdot 12.635+0.1175 \cdot 0.8962+0.3634 \cdot 0.3150+0.1538) \approx 0.1234$
The signal to noise ratio is

$$
\mathrm{SNR}=10 \cdot \log _{10} \frac{\sigma_{X}^{2}}{D} \approx 10 \cdot \log _{10} \frac{3.5}{0.1234} \approx 14.5[\mathrm{~dB}]
$$

