Solutions to Written Exam in Image and Audio Compression TSBK38

29th May 2023

1
See the course literature.

See the course literature.

See the course literature.
a) See the course literature.
b) See the course literature.
c) See the course literature.

6 a) The theoretical limit is given by entropy rate of the source, which for a memoryless source is given by the entropy of single symbols, in this case approximately 2.1345 bits/symbol.
b) One Huffman code (there are other) is given by

symbol	codeword	codeword length
a	0	1
b	100	3
c	110	3
d	111	3
e	1010	4
f	1011	4

The code has a rate of $2.17 \mathrm{bits} / \mathrm{symbol}$.
$7 \quad$ See the course literature.

8 The decoded sequence is
purpurpurpurpurpurpurpurpurpurt...
and the dictionary looks like

index	sekvens	index	sekvens	index	sekvens
0	p	8	$r p$	16	rpur
1	r	9	pur	17	rpurt
2	s	10	$r p u$	18	$t *$
3	t	11	urp		
4	u	12	purp		
5	v	13	purpu		
6	$p u$	14	urpu		
7	$u r$	15	urpur		

where $*$ will be the first symbol in the next decoded index.

9 For symmetry reasons, the decision borders must placed as

$$
b_{0}=-1, \quad b_{1}=0, \quad b_{2}=1
$$

The reconstruction point y_{2} is given by

$$
y_{2}=\frac{\int_{0}^{1} x \cdot f_{X}(x) d x}{\int_{0}^{1} \cdot f_{X}(x) d x}=\frac{1 / 8}{1 / 2}=\frac{1}{4}
$$

Also for symmetry reasons, $y_{1}=-y_{2}$.
The distortion is given by

$$
D=\int_{-1}^{0}\left(x+\frac{1}{4}\right)^{2} \cdot f_{X}(x) d x+\int_{0}^{1}\left(x-\frac{1}{4}\right)^{2} \cdot f_{X}(x) d x=\frac{3}{80}
$$

5 bits/pixel can be considered as fine quantization. We make the approximation $\hat{Z}_{i, j} \approx Z_{i, j}$ and assume that the prediction error is also gaussian. One good predictor (there are other predictors that also solve the problem) is

$$
p_{i, j}=a_{1} \cdot \hat{Z}_{i-1, j}+a_{2} \cdot \hat{Z}_{i, j-1} \approx a_{1} \cdot Z_{i-1, j}+a_{2} \cdot Z_{i, j-1}
$$

The variance of the prediction error is given by

$$
\sigma_{d}^{2}=E\left\{\left(Z_{i, j}-p_{i, j}\right)^{2}\right\} \approx E\left\{\left(Z i, j-a_{1} Z_{i-1, j}-a_{2} Z_{i, j-1}\right)^{2}\right\}
$$

a_{1} and a_{2} that minimize σ_{d}^{2} are given by

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 0.91^{1.5} \\
0.91^{1.5} & 1
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0.91}{0.91^{0.5}} \\
\Rightarrow\binom{a_{1}}{a_{2}} \approx\binom{0.3323}{0.6654} \\
\Rightarrow \sigma_{d}^{2} \approx 1.8206
\end{gathered}
$$

Since we are free to choose, we use uniform quantization followed by source coding at the rate 5 bits/pixel, which gives the distortion

$$
\begin{aligned}
& D \approx \sigma_{d}^{2} \cdot \frac{\pi e}{6} \cdot 2^{-2 \cdot 5} \approx 0.002531 \\
& \mathrm{SNR}=10 \cdot \log _{10} \frac{29}{D} \approx 40.6[\mathrm{~dB}]
\end{aligned}
$$

11 The correlation matrix for the input signal is

$$
\mathbf{R}_{X}=\left(\begin{array}{rrrr}
1 & 0.94 & 0.94^{2} & 0.94^{3} \\
0.94 & 1 & 0.94 & 0.94^{2} \\
0.94^{2} & 0.94 & 1 & 0.94 \\
0.94^{3} & 0.94^{2} & 0.94 & 1
\end{array}\right)
$$

The correlation matrix for the transformed signal is

$$
\mathbf{R}_{\Theta}=\mathbf{A R}_{X} \mathbf{A}^{T} \approx\left(\begin{array}{rrrr}
3.7089 & 0 & -0.0547 & 0 \\
0 & 0.1931 & 0 & 0.0014 \\
-0.0547 & 0 & 0.0617 & 0 \\
0 & 0.0014 & 0 & 0.0361
\end{array}\right)
$$

The variances for the transform components can be found in the diagonal

$$
\sigma_{0}^{2} \approx 3.7089, \quad \sigma_{2}^{2} \approx 0.1931, \quad \sigma_{2}^{2} \approx 0.0617, \quad \sigma_{3}^{2} \approx 0.0361
$$

The variances can of course be found by calculating the variance individually for each transform component. For example,

$$
\begin{aligned}
\sigma_{1}^{2} & =E\left\{\theta_{1}^{2}\right\}=\frac{1}{128^{2}} E\left\{\left(83 \cdot X_{0}+36 \cdot X_{1}-36 \cdot X_{2}-83 \cdot X_{2}\right)^{2}\right\}= \\
& =\frac{1}{16384}\left(16370 \cdot R_{X X}(0)+9360 \cdot R_{X X}(1)-11952 \cdot R_{X X}(2)-13778 \cdot R_{X X}(3)\right) \approx \\
& \approx 0.1931
\end{aligned}
$$

and similarly for the three other components.
Allocating bits, we find that θ_{0} should be quantized with 4 bits, θ_{1} with 2 bits, θ_{2} with 1 bit and θ_{3} with 0 bits. The resulting average distortion will be

$$
D \approx \frac{0.009497 \cdot \sigma_{0}^{2}+0.1175 \cdot \sigma_{1}^{2}+0.3634 \cdot \sigma_{2}^{2}+\sigma_{3}^{2}}{4} \approx 0.02911
$$

and the corresponding signal to noise ratio is

$$
\mathrm{SNR}=10 \cdot \log _{10} \frac{1}{D} \approx 15.36[\mathrm{~dB}]
$$

