# Solutions for chapter 2-5 in Sayood 

Harald Nautsch

6th September 2004

## Chapter 2

## Problem 1

Since $0 \leq p_{i} \leq 1, p_{i} \cdot \log _{2} p_{i} \leq 0$ which means that $H(X)=-\sum p_{i} \cdot \log _{2} p_{i} \geq 0$. For the other inequality we consider $H(X)-\log _{2} M$

$$
\begin{aligned}
H(X)-\log M & =-\sum_{i=1}^{M} p_{i} \log p_{i}-\log M \\
& =-\sum_{i=1}^{M} p_{i} \log p_{i}-\sum_{i=1}^{M} p_{i} \log M \\
& =\sum_{i=1}^{M} p_{i} \log \frac{1}{M \cdot p_{i}} \\
& \leq \frac{1}{\ln 2} \sum_{i=1}^{M} p_{i}\left(\frac{1}{M \cdot p_{i}}-1\right) \\
& =\frac{1}{\ln 2}\left(\sum_{i=1}^{M} \frac{1}{M}-\sum_{i=1}^{M} p_{i}\right) \\
& =\frac{1}{\ln 2}(1-1)=0
\end{aligned}
$$

where we used the fact that $\ln x \leq x-1$ (show this!).

## Problem 3

(a) $H(X)=2$ bits
(b) $H(X)=1.75$ bits
(c) $H(X) \approx 1.7398$ bits

## Problem 7

(a) Not uniquely decodable
(b) Not uniquely decodable
(c) Uniquely decodable
(d) Not uniquely decodable

## Chapter 3

## Problem 4

(a) $H=-\sum_{i=1}^{5} P\left(a_{i}\right) \cdot \log _{2} P\left(a_{i}\right) \approx 1.8177$ bits
(b) The code tree will look like


The codewords can for example be:

| $a_{1}$ | 110 |
| :--- | :--- |
| $a_{2}$ | 1111 |
| $a_{3}$ | 10 |
| $a_{4}$ | 1110 |
| $a_{5}$ | 0 |

(c) The average codeword length will be

$$
\bar{l}=1+0.5+0.24+0.09=1.83 \text { bits/codeword }
$$

and the redundancy is thus

$$
\bar{l}-H \approx 0.0123
$$

## Problem 5

(a) The code tree will look like

(b) The code tree will look like


Both codes have the same average rate ( 2 bits/symbol). Since the second code has codewords of the same length, it might be more useful in an environment with errors or where buffer control is needed.

## Problem 13

The code will look similar to

| Sequence | codeword |
| :--- | :---: |
| $a_{1} a_{1} a_{1}$ | 000 |
| $a_{1} a_{1} a_{2}$ | 001 |
| $a_{1} a_{1} a_{3}$ | 010 |
| $a_{1} a_{2}$ | 011 |
| $a_{1} a_{3}$ | 100 |
| $a_{2}$ | 101 |
| $a_{3}$ | 110 |

and have an average rate of

$$
R=\frac{3}{2.19} \approx 1.3699 \mathrm{bits} / \mathrm{symbol}
$$

(The entropy of the source is approximately 1.1568 bits/symbol.)

## Chapter 4

## Problem 5

Cumulative probability function

$$
F(0)=0, \quad F(1)=0.2, \quad F(2)=0.5, \quad F(3)=1
$$

The first symbol is $a_{1}$

$$
\begin{aligned}
l^{(1)} & =0+(1-0) \cdot 0=0 \\
u^{(1)} & =0+(1-0) \cdot 0.2=0.2
\end{aligned}
$$

The second symbol is $a_{1}$

$$
\begin{aligned}
l^{(2)} & =0+(0.2-0) \cdot 0=0 \\
u^{(2)} & =0+(0.2-0) \cdot 0.2=0.04
\end{aligned}
$$

The third symbol is $a_{3}$

$$
\begin{aligned}
l^{(3)} & =0+(0.04-0) \cdot 0.5=0.02 \\
u^{(3)} & =0+(0.04-0) \cdot 1=0.04
\end{aligned}
$$

The fourth symbol is $a_{2}$

$$
\begin{aligned}
l^{(4)} & =0.02+(0.04-0.02) \cdot 0.2=0.024 \\
u^{(4)} & =0.02+(0.04-0.02) \cdot 0.5=0.03
\end{aligned}
$$

The fifth symbol is $a_{3}$

$$
\begin{aligned}
l^{(5)} & =0.024+(0.03-0.024) \cdot 0.5=0.027 \\
u^{(5)} & =0.024+(0.03-0.024) \cdot 1=0.03
\end{aligned}
$$

The sixth symbol is $a_{1}$

$$
\begin{aligned}
l^{(6)} & =0.027+(0.03-0.027) \cdot 0=0.027 \\
u^{(6)} & =0.027+(0.03-0.027) \cdot 0.2=0.0276
\end{aligned}
$$

The tag should be a number in the interval $[0.027,0.0276)$, for instance we can choose the midpoint 0.0273 .

## Problem 6

The decoded sequence is

## Chapter 5

In these solutions, the symbol $\_$is used to denote the space character.

## Problem 3

| index | string | index | string | index | string | index | string |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | a | 7 | -b | 13 | ra | 19 | rr |
| 2 | b | 8 | ba | 14 | ay | 20 | ray |
| 3 | r | 9 | ar | 15 | y- | 21 | ya |
| 4 | y | 10 | r_ | 16 | -by | 22 | ar_ |
| 5 | - | 11 | -a | 17 | y_b | 23 | -ba |
| 6 | a_ | 12 | arr | 18 | bar | 24 |  |

The index sequence is

$$
1,5,2,1,3,5,9,3,1,4,7,15,8,3,13,4,9,7,14
$$

Problem 4

| index | string | index | string | index | string | index | string |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | a | 8 | hi | 15 | -i | 22 | t_is |
| 2 | - | 9 | is | 16 | is_ | 23 | s_h |
| 3 | h | 10 | s- | 17 | -hi | 24 | his |
| 4 | i | 11 | h | 18 | is_h | 25 | s_ha |
| 5 | S | 12 | ha | 19 | hat | 26 | at? |
| 6 | t | 13 | at | 20 | t_i | 27 |  |
| 7 | th | 14 | t- | 21 | it | 28 |  |

The decoded sequence is: this_hat_is_his_hat_it_is_his_hat

## Problem 5

| index | string | index | string | index | string | index | string |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | a | 6 | at | 11 | -a | 16 | at_ |
| 2 | - | 7 | ta | 12 | a_ | 17 | -a_ |
| 3 | r | 8 | ata | 13 | -r | 18 | -ra |
| 4 | t | 9 | atat | 14 | rat | 19 | at? |
| 5 | ra | 10 | t_ | 15 | t_a | 20 |  |

The decoded sequence is: ratatatat_a_rat_at_a_rat

## Problem 6

The resulting sequence of triples is:
$\langle 0,0,2\rangle\langle 0,0,1\rangle\langle 0,0,4\rangle\langle 1,1,1\rangle\langle 0,0,5\rangle\langle 5,2,3\rangle$
$<9,3,3><4,1,5><7,4,4><3,1,5><12,4,1>$

## Problem 7

The decoded sequence is: ratatatatat_a_rat_at_a_rat

