Differential entropy

A continuous random variable X has the probability density function f(x). The *differential entropy* h(X) of the variable is defined as

$$h(X) = -\int_{-\infty}^{\infty} f(x) \cdot \log f(x) \, dx$$

Unlike the entropy for a discrete variable, the differential entropy can be both positive and negative.

Translation and scaling

$$h(X + c) = h(X)$$
$$h(aX) = h(X) + \log |a|$$

Common distributions

Normal distribution (gaussian distribution)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$
, $h(X) = \frac{1}{2}\log 2\pi e\sigma^2$

Laplace distribution

$$f(x) = \frac{1}{\sqrt{2\sigma}} e^{-\frac{\sqrt{2}|x-m|}{\sigma}}$$
, $h(X) = \frac{1}{2} \log 2e^2 \sigma^2$

Uniform distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}, \quad h(X) = \log(b-a) = \frac{1}{2}\log 12\sigma^2$$

Differential entropy, cont.

The gaussian distribution is the distribution that maximizes the differential entropy, for a given variance. Ie, the differential entropy for a variable X with variance σ^2 satisfies the inequality

$$h(X) \leq rac{1}{2}\log 2\pi e\sigma^2$$

with equality if X is gaussian.

If we instead only consider distributions with finite support, the differential entropy is maximized (for a given support) by the uniform distribution.

Quantization

ŀ

Suppose we do uniform quantization of a continuous random variable X. The quantized variable \hat{X} is a discrete variable. The probability $p(x_i)$ for the outcome x_i is approximately $\Delta \cdot f(x_i)$, where Δ is the step size of the quantizer. The entropy of the quantized variable is

$$\begin{aligned} f(\hat{X}) &= -\sum_{i} p(x_{i}) \cdot \log p(x_{i}) \\ &\approx -\sum_{i} \Delta f(x_{i}) \cdot \log(\Delta f(x_{i})) \\ &= -\sum_{i} \Delta f(x_{i}) \cdot \log f(x_{i}) - \sum_{i} \Delta f(x_{i}) \cdot \log \Delta \\ &\approx -\int_{-\infty}^{\infty} f(x) \cdot \log f(x) \, dx - \log \Delta \int_{-\infty}^{\infty} f(x) \, dx \\ &= h(X) - \log \Delta \end{aligned}$$

Differential entropy, cont.

Two random variables X and Y with joint density function f(x, y) and conditional density functions f(x|y) and f(y|x). The joint differential entropy is defined as

$$h(X,Y) = -\int f(x,y) \cdot \log f(x,y) \, dxdy$$

The conditional differential entropy is defined as

$$h(X|Y) = -\int f(x,y) \cdot \log f(x|y) \, dxdy$$

Conditioning reduces the differential entropy

 $h(X|Y) \leq h(X)$

We have

$$h(X, Y) = h(X) + h(Y|X) = h(Y) + h(X|Y)$$

Differential entropy, cont.

The mutual information between X and Y is defined as

$$I(X;Y) = \int f(x,y) \cdot \log \frac{f(x,y)}{f(x)f(y)} \, dxdy$$

which gives

$$I(X; Y) = h(X) - h(X|Y) = h(Y) - h(Y|X) = h(X) + h(Y) - h(X, Y)$$

We have that $I(X; Y) \ge 0$ with equality iff X and Y are independent.

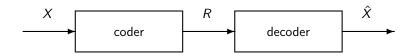
Given two uniformely quantized versions of X and Y

$$I(\hat{X}; \hat{Y}) = H(\hat{X}) - H(\hat{X}|\hat{Y})$$

$$\approx h(X) - \log \Delta - (h(X|Y) - \log \Delta)$$

$$= I(X; Y)$$

Coding with distortion



If we remove the demand that the original signal X and the decoded signal \hat{X} should be the same, we can get a much lower rate R. The downside is of course that we get some kind of distortion.

Distortion

There are many distortion measures to use. When the signal alphabet is the real numbers, the most common measure is the *mean square error*. Given an original sequence $x_i, i = 1, ..., n$ and the corresponding decoded sequence $\hat{x}_i, i = 1, ..., n$ the distortion is then

$$\frac{1}{n}\sum_{i=1}^n(x_i-\hat{x}_i)^2$$

If we have a random signal model, with original signal X_i and decoded signal \hat{X}_i , the distortion is then

$$E\{(X_{i}-\hat{X}_{i})^{2}\} = \int_{x,\hat{x}} f(x,\hat{x})(x-\hat{x})^{2} dx d\hat{x}$$

Rate-distortion function

The rate-distortion function R(D) gives the theoretical lowest rate R (in bits/sample) that we can ever achieve, on the condition that the resulting distortion is not larger than D.

For a memoryless stationary continuous random source X_i , the rate-distortion function is given by

$$R(D) = \min_{f(\hat{x}|x): E\{(X_i - \hat{X}_i)^2\} \le D} I(X_i; \hat{X}_i)$$

The minimization is performed over all conditional density functions $f(\hat{x}|x)$ for which the joint density function $f(x, \hat{x}) = f(x) \cdot f(\hat{x}|x)$ satisfies the distortion constraint.

Note that we don't have a deterministic mapping from x to \hat{x} .

Gaussian source

If the source is a memoryless gaussian source with zero mean and variance σ^2 , the rate-distortion function is

$$R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D} & 0 \le D \le \sigma^2\\ 0 & D > \sigma^2 \end{cases}$$

Short proof:

If $D > \sigma^2$ we choose $\hat{X}_i = 0$ with probability 1, giving us $I(X; \hat{X}) = 0$ and thus R(D) = 0. If $D \le \sigma^2$ we have

$$\begin{split} I(X; \hat{X}) &= h(X) - h(X|\hat{X}) = h(X) - h(X - \hat{X}|\hat{X}) \\ &\geq h(X) - h(X - \hat{X}) \ge h(X) - h(\mathcal{N}(0, E\{(X - \hat{X})^2\})) \\ &= \frac{1}{2} \log 2\pi e \sigma^2 - \frac{1}{2} \log 2\pi e E\{(X - \hat{X})^2\} \\ &\geq \frac{1}{2} \log 2\pi e \sigma^2 - \frac{1}{2} \log 2\pi e D = \frac{1}{2} \log \frac{\sigma^2}{D} \end{split}$$

Gaussian source, cont.

We have thus shown that

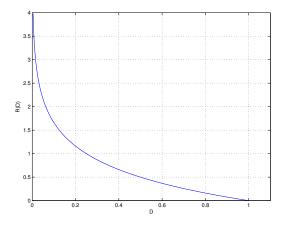
$$R(D) \geq rac{1}{2}\lograc{\sigma^2}{D}$$

Now we find a distribution that achieves the bound. Suppose we choose $\hat{X} \sim \mathcal{N}(0, \sigma^2 - D)$ and $Z \sim \mathcal{N}(0, D)$ such that \hat{X} and Z are independent and $X = \hat{X} + Z$. For this distribution we get

$$I(X; \hat{X}) = \frac{1}{2} \log \frac{\sigma^2}{D}$$

and $E\{(X - \hat{X})^2\} = D.$

Gaussian source



R(D) for a memoryless gaussian source with variance 1. As D tends towards 0, R(D) tends towards infinity.

Multiple independent gaussian sources

Suppose we have *m* mutually independent memoryless gaussian sources with zero mean and variances σ_i^2 . Each source has a rate-distortion function $R_i(D_i)$. We want to find the rate-distortion function for all sources at once, ie given a total maximum allowed distortion $D = \sum_{i=1}^{m} D_i$, what is the lowest total rate $R = \sum_{i=1}^{m} R_i$?

The problem of finding the rate-distortion function is reduced to the following optimization

$$R(D) = \min_{\sum D_i = D} \sum_{i=1}^m \max\{\frac{1}{2}\log\frac{\sigma_i^2}{D_i}, 0\}$$

to find the optimal allotment of bits to each component.

Lagrange optimization gives that, if possible, we should choose the same distortion for each component. The distortion for component *i* can never be larger than the variance σ_i^2 though.

Multiple independent gaussian sources

The rate-distortion function is thus given by.

$$R(D) = \sum_{i=1}^{m} \frac{1}{2} \log \frac{\sigma_i^2}{D_i}$$

where

$$D_{i} = \begin{cases} \lambda & , \ \lambda < \sigma_{i}^{2} \\ \sigma_{i}^{2} & , \ \lambda \ge \sigma_{i}^{2} \end{cases}$$

and λ is chosen so that $\sum_{i=1}^{m} D_i = D$.

This is often referred to as "reverse water-filling". We choose a constant λ and only describe those components that have a variance larger than λ . No bits are used for the components that have a variance less than λ .

Multivariate gaussian source

Suppose we have an *m*-dimensional multivariate gaussian source X with zero means and covariance matrix C.

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^m |C|}} \exp(-\frac{1}{2} \mathbf{x}^T C^{-1} \mathbf{x})$$

The rate-distortion function is found by doing reverse water-filling on the eigenvalues s_i of C

$$R(D) = \sum_{i=1}^{m} \frac{1}{2} \log \frac{s_i}{D_i}$$

where

$$D_i = \left\{ egin{array}{cc} \lambda & , \ \lambda < s_i \ s_i & , \ \lambda \geq s_i \end{array}
ight.$$

and λ is chosen so that $\sum_{i=1}^{m} D_i = D$.

Gaussian source with memory

For gaussian sources with memory, we do reverse water-filling on the spectrum. Each frequency can be seen as an independent gaussian process.

The auto-correlation function of the source is

$$R_{XX}(k) = E\{X_i \cdot X_{i+k}\}$$

and the power spectral density is the Fourier transform of the auto correlation function

$$\Phi(\theta) = \mathcal{F}\{R_{XX}(k)\} = \sum_{k=-\infty}^{\infty} R_{XX}(k) \cdot e^{-j2\pi\theta k}$$

Gaussian source with memory

The rate-distortion function is then given by.

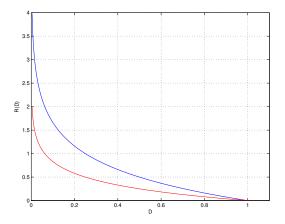
$$R(D) = \int_{-1/2}^{1/2} \max\{rac{1}{2}\lograc{\Phi(heta)}{\lambda}, 0\} \; d heta$$

where

$$D = \int_{-1/2}^{1/2} \min\{\lambda, \Phi(\theta)\} \ d\theta$$

The integration can of course be done over any interval of size 1, since the power spectral density is a periodic function.

Gaussian sources



R(D) for an ideally bandlimited gaussian source (red), compared to the R(D) for a memoryless/white gaussian source (blue). Both sources have variance 1.

Non-gaussian sources

For other distributions, the rate-distortion function can be hard to calculate. However, there are upper and lower bounds.

Given a stationary memoryless random source X with variance σ^2 , the rate-distortion function is bounded by

$$h(X) - \frac{1}{2}\log 2\pi eD \leq R(D) \leq \frac{1}{2}\log \frac{\sigma^2}{D}$$

For a gaussian source, both bounds are the same.

For a laplacian source we get

$$\frac{1}{2}\log\frac{\sigma^2}{D} - \frac{1}{2}\log\frac{\pi}{e} \leq R(D) \leq \frac{1}{2}\log\frac{\sigma^2}{D}$$

Real coder

How far from the theoretical rate-distortion are we if we do practical coding?

Suppose we have a memoryless gaussian signal. The signal is quantized with a uniform quantizer and the quantized signal is then source coded. For uniform quantization, the distortion is approximately

$$D pprox rac{\Delta^2}{12}$$

Under the assumption that we do a perfect entropy coding of the quantized signal, the data rate is

$$R = H(\hat{X}) \approx h(X) - \log \Delta \approx h(X) - \log \sqrt{12D}$$
$$= \frac{1}{2} \log 2\pi e \sigma^2 - \log \sqrt{12D} = \frac{1}{2} \log \frac{\pi e \sigma^2}{6D}$$
$$= \frac{1}{2} \log \frac{\sigma^2}{D} + \frac{1}{2} \log \frac{\pi e}{6} \approx \frac{1}{2} \log \frac{\sigma^2}{D} + 0.2546$$

Discrete sources

For discrete alphabets, the mean square error might not be a suitable distortion measure. A common distortion measure is the *Hamming distorsion*, defined by

$$d_H(x, \hat{x}) = \left\{egin{array}{cc} 0 & ext{if} & x = \hat{x} \ 1 & ext{if} & x
eq \hat{x} \end{array}
ight.$$

Given an original sequence x_i , i = 1, ..., n and the corresponding decoded sequence \hat{x}_i , i = 1, ..., n the distortion is then

$$\frac{1}{n}\sum_{i=1}^n d_H(x_i,\hat{x}_i)$$

The Hamming distortion between the two sequences is thus the relative proportion of positions in which they differ.

For a memoryless stationary discrete random source X_i and using the Hamming distortion measure, the rate-distortion function is given by

$$R(D) = \min_{p(\hat{x}|x): \sum_{x,\hat{x}} p(x) \cdot p(\hat{x}|x) \cdot d_H(x,\hat{x}) \le D} I(X_i; \hat{X}_i)$$

The minimization is performed over all conditional probability distributions $p(\hat{x}|x)$ for which the joint probability distribution $p(x, \hat{x}) = p(x) \cdot p(\hat{x}|x)$ satisfies the distortion constraint.

Bernoulli source

Given a Bernoulli source (ie a memoryless binary source with probabilities p and 1 - p for the two outcomes) and using Hamming distortion as the distortion measure, the rate-distortion function is given by

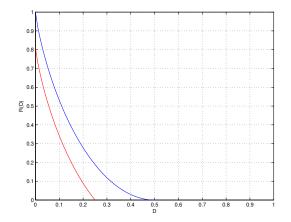
$$R(D) = \begin{cases} H_b(p) - H_b(D) & \text{if } 0 \le D \le \min\{p, 1-p\} \\ 0 & \text{if } D > \min\{p, 1-p\} \end{cases}$$

where $H_b(q)$ is the binary entropy function

$$H_b(q) = -q \cdot \log q - (1-q) \cdot \log(1-q)$$

Note that if we require D = 0, the lowest possible rate is equal to the entropy rate of the source.

Bernoulli sources



R(D) for Bernoulli sources with p = 0.5 (blue) and p = 0.75 (red).

Real coder

Suppose we have a Bernoulli source. Assume, without loss of generality, that $p \ge 1 - p$, ie $p \ge 0.5$.

Let the coder keep a fraction $0 \le k \le 1$ of symbols. Code the symbols that are kept with a perfect source coder and discard the rest.

The decoder will decode the symbols that the coder kept and set the rest to 0 (the most probable value). On average, the fraction of incorrectly decoded symbols will be (1 - k)(1 - p), which is equal to the distortion D, ie

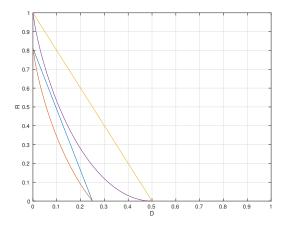
$$(1-k)(1-p) = D \quad \Rightarrow \quad k = 1 - \frac{D}{1-p}$$

The rate of the coder, assuming that the source coder achieves the entropy bound is

$$R = k \cdot H_b(p) = \left(1 - \frac{D}{1-p}\right) \cdot H_b(p)$$

which is a straight line between $(0, H_b(p))$ and (1 - p, 0).

Real coder



Performance of our real coder compared with the rate-distortion function for p = 0.5 (yellow/magenta) and p = 0.75 (blue/red).