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Differential entropy

A continuous random variable X has the probability density function
f (x). The differential entropy h(X ) of the variable is defined as

h(X ) = −
∫ ∞
−∞

f (x) · log f (x) dx

Unlike the entropy for a discrete variable, the differential entropy can be
both positive and negative.

Translation and scaling
h(X + c) = h(X )

h(aX ) = h(X ) + log |a|
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Common distributions

Normal distribution (gaussian distribution)

f (x) =
1√
2πσ

e−
(x−m)2

2σ2 , h(X ) =
1

2
log 2πeσ2

Laplace distribution

f (x) =
1√
2σ

e−
√

2|x−m|
σ , h(X ) =

1

2
log 2e2σ2

Uniform distribution

f (x) =

{
1

b−a a ≤ x ≤ b

0 otherwise
, h(X ) = log(b − a) =

1

2
log 12σ2
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Differential entropy, cont.

The gaussian distribution is the distribution that maximizes the
differential entropy, for a given variance. Ie, the differential entropy for a
variable X with variance σ2 satisfies the inequality

h(X ) ≤ 1

2
log 2πeσ2

with equality if X is gaussian.

If we instead only consider distributions with finite support, the
differential entropy is maximized (for a given support) by the uniform
distribution.
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Quantization

Suppose we do uniform quantization of a continuous random variable X .
The quantized variable X̂ is a discrete variable. The probability p(xi ) for
the outcome xi is approximately ∆ · f (xi ), where ∆ is the step size of the
quantizer. The entropy of the quantized variable is

H(X̂ ) = −
∑
i

p(xi ) · log p(xi )

≈ −
∑
i

∆f (xi ) · log(∆f (xi ))

= −
∑
i

∆f (xi ) · log f (xi )−
∑
i

∆f (xi ) · log ∆

≈ −
∫ ∞
−∞

f (x) · log f (x) dx − log ∆

∫ ∞
−∞

f (x) dx

= h(X )− log ∆
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Differential entropy, cont.

Two random variables X and Y with joint density function f (x , y) and
conditional density functions f (x |y) and f (y |x). The joint differential
entropy is defined as

h(X ,Y ) = −
∫

f (x , y) · log f (x , y) dxdy

The conditional differential entropy is defined as

h(X |Y ) = −
∫

f (x , y) · log f (x |y) dxdy

Conditioning reduces the differential entropy

h(X |Y ) ≤ h(X )

We have
h(X ,Y ) = h(X ) + h(Y |X ) = h(Y ) + h(X |Y )
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Differential entropy, cont.

The mutual information between X and Y is defined as

I (X ;Y ) =

∫
f (x , y) · log

f (x , y)

f (x)f (y)
dxdy

which gives

I (X ;Y ) = h(X )− h(X |Y ) = h(Y )− h(Y |X ) = h(X ) + h(Y )− h(X ,Y )

We have that I (X ;Y ) ≥ 0 with equality iff X and Y are independent.

Given two uniformely quantized versions of X and Y

I (X̂ ; Ŷ ) = H(X̂ )− H(X̂ |Ŷ )

≈ h(X )− log ∆− (h(X |Y )− log ∆)

= I (X ;Y )
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Coding with distortion

- coder - decoder -
X R X̂

If we remove the demand that the original signal X and the decoded
signal X̂ should be the same, we can get a much lower rate R. The
downside is of course that we get some kind of distortion.
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Distortion

There are many distortion measures to use. When the signal alphabet is
the real numbers, the most common measure is the mean square error.
Given an original sequence xi , i = 1, . . . , n and the corresponding decoded
sequence x̂i , i = 1, . . . , n the distortion is then

1

n

n∑
i=1

(xi − x̂i )
2

If we have a random signal model, with original signal Xi and decoded
signal X̂i , the distortion is then

E{(Xi − X̂i )
2} =

∫
x,x̂

f (x , x̂)(x − x̂)2dxdx̂
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Rate-distortion function

The rate-distortion function R(D) gives the theoretical lowest rate R (in
bits/sample) that we can ever achieve, on the condition that the resulting
distortion is not larger than D.

For a memoryless stationary continuous random source Xi , the
rate-distortion function is given by

R(D) = min
f (x̂|x):E{(Xi−X̂i )2}≤D

I (Xi ; X̂i )

The minimization is performed over all conditional density functions
f (x̂ |x) for which the joint density function f (x , x̂) = f (x) · f (x̂ |x)
satisfies the distortion constraint.

Note that we don’t have a deterministic mapping from x to x̂ .
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Gaussian source

If the source is a memoryless gaussian source with zero mean and
variance σ2, the rate-distortion function is

R(D) =

{
1
2 log σ2

D 0 ≤ D ≤ σ2

0 D > σ2

Short proof:
If D > σ2 we choose X̂i = 0 with probability 1, giving us I (X ; X̂ ) = 0
and thus R(D) = 0.
If D ≤ σ2 we have

I (X ; X̂ ) = h(X )− h(X |X̂ ) = h(X )− h(X − X̂ |X̂ )

≥ h(X )− h(X − X̂ ) ≥ h(X )− h(N (0,E{(X − X̂ )2}))

=
1

2
log 2πeσ2 − 1

2
log 2πeE{(X − X̂ )2}

≥ 1

2
log 2πeσ2 − 1

2
log 2πeD =

1

2
log

σ2

D
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Gaussian source, cont.

We have thus shown that

R(D) ≥ 1

2
log

σ2

D

Now we find a distribution that achieves the bound.
Suppose we choose X̂ ∼ N (0, σ2 − D) and Z ∼ N (0,D) such that X̂
and Z are independent and X = X̂ + Z . For this distribution we get

I (X ; X̂ ) =
1

2
log

σ2

D

and E{(X − X̂ )2} = D.
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Gaussian source
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R(D) for a memoryless gaussian source with variance 1. As D tends
towards 0, R(D) tends towards infinity.
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Multiple independent gaussian sources

Suppose we have m mutually independent memoryless gaussian sources
with zero mean and variances σ2

i . Each source has a rate-distortion
function Ri (Di ). We want to find the rate-distortion function for all
sources at once, ie given a total maximum allowed distortion
D =

∑m
i=1 Di , what is the lowest total rate R =

∑m
i=1 Ri?

The problem of finding the rate-distortion function is reduced to the
following optimization

R(D) = min∑
Di=D

m∑
i=1

max{1

2
log

σ2
i

Di
, 0}

to find the optimal allotment of bits to each component.

Lagrange optimization gives that, if possible, we should choose the same
distortion for each component. The distortion for component i can never
be larger than the variance σ2

i though.
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Multiple independent gaussian sources

The rate-distortion function is thus given by.

R(D) =
m∑
i=1

1

2
log

σ2
i

Di

where

Di =

{
λ , λ < σ2

i

σ2
i , λ ≥ σ2

i

and λ is chosen so that
∑m

i=1 Di = D.

This is often referred to as “reverse water-filling”. We choose a constant
λ and only describe those components that have a variance larger than λ.
No bits are used for the components that have a variance less than λ.
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Multivariate gaussian source

Suppose we have an m-dimensional multivariate gaussian source X with
zero means and covariance matrix C .

f (x) =
1√

(2π)m|C |
exp(−1

2
xTC−1x)

The rate-distortion function is found by doing reverse water-filling on the
eigenvalues si of C

R(D) =
m∑
i=1

1

2
log

si
Di

where

Di =

{
λ , λ < si
si , λ ≥ si

and λ is chosen so that
∑m

i=1 Di = D.



16/26

Gaussian source with memory

For gaussian sources with memory, we do reverse water-filling on the
spectrum. Each frequency can be seen as an independent gaussian
process.

The auto-correlation function of the source is

RXX (k) = E{Xi · Xi+k}

and the power spectral density is the Fourier transform of the auto
correlation function

Φ(θ) = F{RXX (k)} =
∞∑

k=−∞

RXX (k) · e−j2πθk



17/26

Gaussian source with memory

The rate-distortion function is then given by.

R(D) =

∫ 1/2

−1/2
max{1

2
log

Φ(θ)

λ
, 0} dθ

where

D =

∫ 1/2

−1/2
min{λ,Φ(θ)} dθ

The integration can of course be done over any interval of size 1, since
the power spectral density is a periodic function.
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Gaussian sources
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R(D) for an ideally bandlimited gaussian source (red), compared to the
R(D) for a memoryless/white gaussian source (blue). Both sources have
variance 1.
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Non-gaussian sources

For other distributions, the rate-distortion function can be hard to
calculate. However, there are upper and lower bounds.

Given a stationary memoryless random source X with variance σ2, the
rate-distortion function is bounded by

h(X )− 1

2
log 2πeD ≤ R(D) ≤ 1

2
log

σ2

D

For a gaussian source, both bounds are the same.

For a laplacian source we get

1

2
log

σ2

D
− 1

2
log

π

e
≤ R(D) ≤ 1

2
log

σ2

D
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Real coder

How far from the theoretical rate-distortion are we if we do practical
coding?
Suppose we have a memoryless gaussian signal. The signal is quantized
with a uniform quantizer and the quantized signal is then source coded.
For uniform quantization, the distortion is approximately

D ≈ ∆2

12

Under the assumption that we do a perfect entropy coding of the
quantized signal, the data rate is

R = H(X̂ ) ≈ h(X )− log ∆ ≈ h(X )− log
√

12D

=
1

2
log 2πeσ2 − log

√
12D =

1

2
log

πeσ2

6D

=
1

2
log

σ2

D
+

1

2
log

πe

6
≈ 1

2
log

σ2

D
+ 0.2546
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Discrete sources

For discrete alphabets, the mean square error might not be a suitable
distortion measure. A common distortion measure is the Hamming
distorsion, defined by

dH(x , x̂) =

{
0 if x = x̂
1 if x 6= x̂

Given an original sequence xi , i = 1, . . . , n and the corresponding decoded
sequence x̂i , i = 1, . . . , n the distortion is then

1

n

n∑
i=1

dH(xi , x̂i )

The Hamming distortion between the two sequences is thus the relative
proportion of positions in which they differ.
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Rate-distortion function

For a memoryless stationary discrete random source Xi and using the
Hamming distortion measure, the rate-distortion function is given by

R(D) = min
p(x̂|x):

∑
x,x̂ p(x)·p(x̂|x)·dH (x,x̂)≤D

I (Xi ; X̂i )

The minimization is performed over all conditional probability
distributions p(x̂ |x) for which the joint probability distribution
p(x , x̂) = p(x) · p(x̂ |x) satisfies the distortion constraint.
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Bernoulli source

Given a Bernoulli source (ie a memoryless binary source with probabilities
p and 1− p for the two outcomes) and using Hamming distortion as the
distortion measure, the rate-distortion function is given by

R(D) =

{
Hb(p)− Hb(D) if 0 ≤ D ≤ min{p, 1− p}
0 if D > min{p, 1− p}

where Hb(q) is the binary entropy function

Hb(q) = −q · log q − (1− q) · log(1− q)

Note that if we require D = 0, the lowest possible rate is equal to the
entropy rate of the source.
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Bernoulli sources
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R(D) for Bernoulli sources with p = 0.5 (blue) and p = 0.75 (red).
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Real coder

Suppose we have a Bernoulli source. Assume, without loss of generality,
that p ≥ 1− p, ie p ≥ 0.5.
Let the coder keep a fraction 0 ≤ k ≤ 1 of symbols. Code the symbols
that are kept with a perfect source coder and discard the rest.
The decoder will decode the symbols that the coder kept and set the rest
to 0 (the most probable value). On average, the fraction of incorrectly
decoded symbols will be (1− k)(1− p), which is equal to the distortion
D, ie

(1− k)(1− p) = D ⇒ k = 1− D

1− p

The rate of the coder, assuming that the source coder achieves the
entropy bound is

R = k · Hb(p) =

(
1− D

1− p

)
· Hb(p)

which is a straight line between (0,Hb(p)) and (1− p, 0).
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Real coder
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Performance of our real coder compared with the rate-distortion function
for p = 0.5 (yellow/magenta) and p = 0.75 (blue/red).


