Dictionary coding

Simple variant of coding with a variable number of symbols and fixlength
codewords.

Create a dictionary containing 2° different symbol sequences and code
them with codewords of length b.

Static dictionaries can work ok when coding sources with wellknown
statistics, in other cases we want a method for adaptively constructing a
dictionary.

Lempel-Ziv coding

Code symbol sequences using references to previous data in the sequence.

There are two main types:
» Use a history buffer, code a partial sequence as a pointer to when
that particular sequence last appeared (LZ77).
» Build a dictionary of all unique partial sequences that appear. The
codewords are references to earlier words (LZ78).

Lempel-Ziv coding, cont.

The coder and decoder don't need to know the statistics of the source.
Performance will asymptotically reach the entropy rate. A coding method
that has this property is called universal.

Lempel-Ziv coding in all its different variants are the most popular
methods for file compression and archiving, eg zip, gzip, ARJ and
compress.

The image coding standards GIF and PNG use Lempel-Ziv.

The standard V.42bis for compression of modem traffic uses Lempel-Ziv.

LZ77
Lempel and Ziv 1977.

View the sequence to be coded through a sliding window. The window is
split into two parts, one part containing already coded symbols (search
buffer) and one part containing the symbols that are about to coded next
(look-ahead buffer).

Find the longest sequence in the search buffer that matches the sequence
that starts in the look-ahead buffer. The codeword is a triple < o,/,¢c >
where o is a pointer to the position in the search buffer where we found
the match (offset), / is the length of the sequence, and c is the next
symbol that doesn't match. This triple is coded using a fixlength
codeword. The number of bits required is

[log S] + [log(W + 1)] + [log N

where S is the size of the search buffer, W is the size of the look-ahead
buffer and N is the alphabet size.

Improvements of LZ77

It is unnecessary to send a pointer and a length if we don't find a
matching sequence. We only need to send a new symbol if we don't find
a matching sequence. Instead we can use an extra flag bit that tells if we
found a match or not. We either send < 1,0,/ > eller < 0,c >. This
variant of LZ77 is called LZSS (Storer and Szymanski, 1982).

Depending on buffer sizes and alphabet sizes it can be better to code
short sequences as a number of single symbols instead of as a match.

In the beginning, before we have filled up the search buffer, we can use
shorter codewords for o and /.

All o, I and ¢ are not equally probable, so we can get even higher
compression by coding them using variable length codes (eg Huffman
codes).

Buffer sizes
In principle we get higher compression for larger search buffers. For

practical reasons, typical search buffer sizes used are around 2% — 216,

Very long match lengths are usually not very common, so it is often
enough to let the maximum match length (ie the look-ahead buffer size)
be a couple of hundred symbols.

Example: LZSS coding of world192.txt, buffer size 32768, match
lengths 3-130 (128 possible values). Histogram for match lengths:

x10°

Optimal LZ77 coding

Earlier we described a greedy algorithm (always choose the longest
match) for coding using LZ77 methods. If we want to minimize the
average data rate (equal to minimizing the total number of bits used for
the whole sequence), this might not be the best way.

Using a shorter match at one point might pay off later in the coding
process. In fact, if we want to minimize the rate, we have to solve a
shortest path optimization problem. Since this is a rather complex
problem, this will lead to slow coding.

Greedy algorithms are often used anyway, since they are fast and easy to
implement.

An alternative might be to look ahead just a few steps and choose the
match that gives the lowest rate for those few steps.

DEFLATE

Deflate is a variant of LZ77 that uses Huffman coding. It is the method
used in zip, gzip and PNG.

Data to be coded are bytes.

The data is coded in blocks of arbitrary size (with the exception of
uncompressed blocks that can be no more than 65536 bytes).

The block is either sent uncompressed or coded using LZ and Huffman
coding.

The match lengths are between 3 and 258. Offset can be between 1 and
32768.

The Huffman coding is either fixed (predefined codewords) or dynamic
(the codewords are sent as side information).

Two Huffman codes are used: one code for single symbols (literals) and
match lengths and one code for offsets.

Symbols and lengths

The Huffman code for symbols and lengths use the alphabet
{0,1,...,285} where the values 0-255 are used for symbols, the value
256 marks the end of a block and the values 257-285 are used to code
lengths together with extra bits:

extra extra extra

bits length bits length bits length
257 0 3 267 1 15,16 | 277 4 67-82
258 0 4 268 1 17,18 | 278 4 83-98
259 0 5 269 2 19-22 | 279 4 99-114
260 0 6 270 2 23-26 | 280 4 115-130
261 0 7 271 2 27-30 | 281 5 131-162
262 0 8 272 2 31-34 | 282 5 163-194
263 0 9 273 3 35-42 | 283 5 195-226
264 0 10 274 3 43-50 | 284 5 227-257
265 1 11,12 | 275 3 51-58 | 285 0 258
266 1 13,14 | 276 3 59-66

Offset

The Huffman code for offset uses the alphabet {0, ...,29}. Extra bits
are used to exactly specify offset 5-32768

extra extra extra
bits offset bits offset bits offset
0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 | 24 11 4097-6144
5 1 7.8 15 6 193-256 | 25 11 6145-8192
6 2 9-12 | 16 7 257-384 | 26 12 8193-12288
7 2 13-16 | 17 7 385-512 | 27 12 12289-16384
8 3 17-24 | 18 8 513-768 | 28 13 16385-24576
9 3 25-32 | 19 8 769-1024 | 29 13 24577-32768

Fixed Huffman codes

Codewords for the symbol/length alphabet:

value number of bits codewords

0-143 8 00110000 - 10111111
144 - 255 9 110010000 - 111111111
256 - 279 7 0000000 - 0010111
280 - 287 8 11000000 - 11000111

The reduced offset alphabet is coded with a five bit fixlength code.

For example, a match of length 116 at offset 12 is coded with the
codewords 11000000 0001 and 00110 11.

Dynamic Huffman codes

The codeword lengths for the different Huffman codes are sent as extra
information.

To get even more compression, the sequence of codeword lengths are
runlength coded and then Huffman coded (!). The codeword lengths for
this Huffman code are sent using a three bit fixlength code.

The algorithm for constructing codewords from codeword lengths is
specified in the standard.

Coding

What is standardized is the syntax of the coded sequence and how it
should be decoded, but there is no specification for how the coder should
work. There is a recommendation about how to implement a coder:

The search for matching sequences is not done exhaustively through the
whole history buffer, but rather with hash tables. A hash value is
calculated from the first three symbols next in line to be coded. In the
hash table we keep track of the offsets where sequences with the same
hash value start (hopefully sequences where the first three symbol
correspond, but that can't be guaranteed). The offsets that have the
same hash value are searched to find the longest match, starting with the
most recent addition. If no match is found the first symbol is coded as a
literal. The search depth is also limited to speed up the coding, at the
price of a reduction in compressionen. For instance, the compression
parameter in gzip controls for how long we search.

Documents

See also:
ftp://ftp.uu.net/pub/archiving/zip/
ftp://ftp.uu.net/graphics/png/
http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc2083.txt

LZ78

Lempel and Ziv 1978.

A dictionary of unique sequences is built. The size of the dictionary is S.
In the beginning the dictionary is empty, apart from index 0 that means
“no match”.

Every new sequence that is coded is sent as the tuple < i, c > where i is
the index in the dictionary for the longest matching sequence we found
and c is the next symbol of the data that didn't match. The matching
sequence plus the next symbol is added as a new word to the dictionary.

The number of bits required is
[log ST + [log N

The decoder can build an identical dictionary.

LZ78, cont.

What to do when the dictionary becomes full? There are a few
alternatives:

» Throw away the dictionary and start over.

» Keep coding with the dictionary, but only send index and do not add
any more words.

» As above, but only as long as the compressionen is good. If it
becomes too bad, throw away the dictionary and start over. In this
case we might have to add an extra symbol to the alphabet that
informs the decoder to start over.

LZW

LZW is a variant of LZ78 (Welch, 1984).

Instead of sending a tuple < i, ¢ > we only send index i in the dictionary.
For this to work, the starting dictionary must contain words of all single
symbols in the alphabet.

Find the longest matching sequence in the dictionary and send the index
as a new codeword. The matching sequence plus the next symbol is
added as a new word to the dictionary.

LZ comparison

A comparison between three different LZ implementations, on three of
the test files from the project lab. All sizes are in bytes.

world192.txt | alice29.txt | xargs.1
original size 2473400 152089 4227
compress 987035 62247 2339
gzip 721413 54191 1756
Tz 499353 48553 1860
pack 1558720 87788 2821
ppmd 374361 38654 1512
paq6v2 360985 36662 1478

compress uses LZW, gzip uses deflate, 7z uses LZMA (a variant of LZ77
where the buffer size is 32MB and all values after matching are modeled
using a Markov model and coded using an arithmetic coder).

Compression of test data

The same data as the previous slide, but with performance given as bits
per symbol. A comparison is also made with some estimated entropies.

world192.txt | alice29.txt | xargs.1
original size 8 8 8
compress 3.19 3.27 4.43
gzip 2.33 2.85 3.32
Tz 1.62 2.55 3.52
pack 5.04 4.62 5.34
ppmd 1.21 2.03 2.86
paq6v2 1.17 1.93 2.80
H(X;) 5.00 4.57 4.90
H(X:| Xi-1) 3.66 3.42 3.20
H(Xi| Xi—1, Xi—2) 2.77 2.49 1.55

GIF (Graphics Interchange Format)

Two standards: GIF87a and GIF89a.

A virtual screen is specified. On this screen rectangular images are
placed. For each little image we send its position and size.

A colour table of maximum 256 colours is used. Each subimage can have
its own colour table, but we can also use a global colour table.

The colour table indices for the pixels are coded using LZW. Two extra
symbols are added to the alphabet: ClearCode, which marks that we
throw away the dictionary and start over, and EndOfInformation, which
marks that the code stream is finished.

Interlace: First lines 0, 8,16, ... are sent, then lines 4,12,20, ... then
lines 2,6,10,... and finally lines 1,3,5, ...

In GIF89a things like animation and transparency are added.

PNG (Portable Network Graphics)

Introduced as a replacement for GIF, partly because of patent issues with
LZW (these patents have expired now).

Uses deflate for compression.
Colour depth up to 3 x 16 bits.
Alpha channel (general transparency).

Can exploit the dependency between pixels (do a prediction from
surrounding pixels and code the difference between the predicted value
and the real value), which makes it easier to compress natural images.

PNG, cont.

Supports 5 different predictors (called filters):
0 No prediction

~

1 /,J = I,"J',l

2 ly =11y

3 0y = [(hevy + lij-1)/2]

4 Paeth (choose the one of li_1j, /i j_1 and li_1 j_1 which is closest to

licij+lij—1— hiz1j-1)

Test image Goldhill

We code the test image Goldhill and compare with our earlier results:

GIF 7.81 bits/pixel
PNG 4.89 bits/pixel
JPEG-LS 4.71 bits/pixel

Lossless JPEG 5.13 bits/pixel

GIF doesn't work particularly well on natural images, since it has trouble
exploiting the kind of dependency that is usually found there.

