
1/38

Shannon-Fano-Elias coding

Suppose that we have a memoryless source Xt taking values in the
alphabet {1, 2, . . . , L}. Suppose that the probabilities for all symbols are
strictly positive: p(i) > 0, ∀i .
The cumulative distribution function F (i) is defined as

F (i) =
∑
k≤i

p(k)

F (i) is a step function where the step in k has the height p(k). Also
consider the modified cumulative distribution function F̄ (i)

F̄ (i) =
∑
k<i

p(k) +
1

2
p(i)

The value of F̄ (i) is the midpoint of the step for i .

2/38

Shannon-Fano-Elias coding

Since all probabilities are positive, F (i) 6= F (j) for i 6= j . Thus we can
determine i if we know F̄ (i). The value of F̄ (i) can be used as a
codeword for i .
In general F̄ (i) is a real number with an inifinite number of bits in its
binary representation, so we can not use the exact value as a codeword.
If we instead use an approximation with a finite number of bits, what
precision do we need, ie how many bits do we need in the codeword?
Suppose that we truncate the binary representation of F̄ (i) to li bits
(denoted by bF̄ (i)cli). Then we have that

F̄ (i)− bF̄ (i)cli <
1

2li

If we let li = d− log p(i)e+ 1 then

1

2li
= 2−li = 2−d− log p(i)e−1 ≤ 2log p(i)−1 =

p(i)

2
= F̄ (i)− F (i − 1)

⇒ bF̄ (i)cli > F (i − 1)

3/38

Shannon-Fano-Elias coding

Thus the number bF̄ (i)cli is in the step corresponding to i and therefore
li = d− log p(i)e+ 1 bits are enough to describe i .

Is the constructed code a prefix code?

Suppose that a codeword is b1b2 . . . bl . These bits represent the interval
[0.b1b2 . . . bl 0.b1b2 . . . bl + 1

2l
) In order for the code to be prefix code,

all intervals must be disjoint.

The interval for the codeword of symbol i has the length 2−li which is
less than half the length of the corresponding step. The starting point of
the interval is in the lower half of the step. This means that the end
point of the interval is below the top of the step. This means that all
intervals are disjoint and that the code is a prefix code.

4/38

Shannon-Fano-Elias coding

What is the rate of the code? The mean codeword length is

l̄ =
∑
i

p(i) · li =
∑
i

p(i) · (d− log p(i)e+ 1)

<
∑
i

p(i) · (− log p(i) + 2) = −
∑
i

p(i) · log p(i) + 2 ·
∑
i

p(i)

= H(Xi) + 2

We code one symbol at a time, so the rate is R = l̄ . The code is thus not
an optimal code and is a little worse than for instance a Huffman code.

The performance can be improved by coding several symbols in each
codeword. This leads to arithmetic coding.

5/38

Arithmetic coding

Arithmetic coding is in principle a generalization of Shannon-Fano-Elias
coding to coding symbol sequences instead of coding single symbols.

Suppose that we want to code a sequence x = x1, x2, . . . , xn.
Start with the whole probability interval [0, 1). In each step divide the
interval proportional to the cumulative distribution F (i) and choose the
subinterval corresponding to the symbol that is to be coded.

If we have a memory source the intervals are divided according to the
conditional cumulative distribution function.

Each symbol sequence of length n uniquely identifies a subinterval. The
codeword for the sequence is a number in the interval. The number of
bits in the codeword depends on the interval size, so that a large interval
(ie a sequence with high probability) gets a short codeword, while a small
interval gives a longer codeword.

6/38

Iterative algorithm

Suppose that we want to code a sequence x = x1, x2, . . . , xn. We denote
the lower limit in the corresponding interval by l (n) and the upper limit by
u(n). The interval generation is then given iteratively by{

l (j) = l (j−1) + (u(j−1) − l (j−1)) · F (xj − 1)
u(j) = l (j−1) + (u(j−1) − l (j−1)) · F (xj)

for j = 1, 2, . . . , n

Starting values are l (0) = 0 and u(0) = 1.

F (0) = 0

The interval size is of course equal to the probability of the sequence

u(n) − l (n) = p(x)

7/38

Codeword

The codeword for an interval is the shortest bit sequence b1b2 . . . bk such
that the binary number 0.b1b2 . . . bk is in the interval and that all other
numbers staring with the same k bits are also in the interval.
Given a binary number a in the interval [0, 1) with k bits 0.b1b2 . . . bk .
All numbers that have the same k first bits as a are in the interval
[a, a + 1

2k
).

A necessary condition for all of this interval to be inside the interval
belonging to the symbol sequence is that it is less than or equal in size to
the symbol sequence interval, ie

p(x) ≥ 1

2k
⇒ k ≥ d− log p(x)e

We can’t be sure that it is enough with d− log p(x)e bits, since we can’t
place these intervals arbitrarily. We can however be sure that we need at
most one extra bit. The codeword length l(x) for a sequence x is thus
given by

l(x) = d− log p(x)e or l(x) = d− log p(x)e+ 1

8/38

Mean codeword length

l̄ =
∑
x

p(x) · l(x) ≤
∑
x

p(x) · (d− log p(x)e+ 1)

<
∑
x

p(x) · (− log p(x) + 2) = −
∑
x

p(x) · log p(x) + 2 ·
∑
x

p(x)

= H(X1X2 . . .Xn) + 2

The resulting data rate is thus bounded by

R <
1

n
H(X1X2 . . .Xn) +

2

n

This is a little worse than the rate for an extended Huffman code, but
extended Huffman codes are not practical for large n. The complexity of
an arithmetic coder, on the other hand, is independent of how many
symbols n that are coded. In arithmetic coding we only have to find the
codeword for a particular sequence and not for all possible sequences.

9/38

Memory sources

When doing arithmetic coding of memory sources, we let the interval
division depend on earlier symbols, ie we use different F in each step
depending on the value of earlier symbols.

For example, if we have a binary Markov source Xt of order 1 with
alphabet {1, 2} and transition probabilities p(xt |xt−1)

p(1|1) = 0.8, p(2|1) = 0.2, p(1|2) = 0.1, p(2|2) = 0.9

we will use two different conditional cumulative distribution functions
F (xt |xt−1)

F (0|1) = 0, F (1|1) = 0.8, F (2|1) = 1

F (0|2) = 0, F (1|2) = 0.1, F (2|2) = 1

For the first symbol in the sequence we can either choose one of the two
distributions or use a third cumulative distribution function based on the
stationary probabilities.

10/38

Practical problems

When implementing arithmetic coding we have a limited precision and
can’t store interval limits and probabilities with aribtrary resolution.

We want to start sending bits without having to wait for the whole
sequence with n symbols to be coded.

One solution is to send bits as soon as we are sure of them and to rescale
the interval when this is done, to maximally use the available precision.

If the first bit in both the lower and the upper limits are the same then
that bit in the codeword must also take this value. We can send that bit
and thereafter shift the limits left one bit, ie scale up the interval size by
a factor 2.

11/38

Fixed point arithmetic

Arithmetic coding is most often implemented using fixed point arithmetic.

Suppose that the interval limits l (j) and u(j) are stored as integers with m
bits precision and that the cumulative distribution function F (i) is stored
as an integer with k bits precision. The algorithm can then be modified to

l (j) = l (j−1) + b (u(j−1) − l (j−1) + 1)F (xj − 1)

2k
c

u(j) = l (j−1) + b (u(j−1) − l (j−1) + 1)F (xj)

2k
c − 1

Starting values are l (0) = 0 and u(0) = 2m − 1.

Note that previously when we had continuous intervals, the upper limit
pointed to the first number in the next interval. Now when the intervals
are discrete, we let the upper limit point to the last number in the
current interval.

12/38

Interval scaling

The cases when we should perform an interval scaling are:

1. The interval is completely in [0, 2m−1 − 1], ie the most significant bit
in both l (j) and u(j) is 0. Shift out the most significant bit of l (j) and
u(j) and send it. Shift a 0 into l (j) and a 1 into u(j).

2. The interval is completely in [2m−1, 2m − 1], ie the most significant
bit in both l (j) and u(j) is 1. Shift out the most significant bit of l (j)

and u(j) and send it. Shift a 0 into l (j) and a 1 into u(j). The same
operations as in case 1.

When we have coded our n symbols we finish the codeword by sending all
m bits in l (n). The code can still be a prefix code with fewer bits, but the
implementation of the decoder is much easier if all of l (n) is sent. For
large n the extra bits are neglible. We probably need to pack the bits into
bytes anyway, which might require padding.

13/38

More problems

Unfortunately we can still get into trouble in our algorithm, if the first bit
of l always is 0 and the first bit of u always is 1. In the worst case
scenario we might end up in the situation that l = 011 . . . 11 and
u = 100 . . . 00. Then our algorithm will break down.

Fortunately there are ways around this. If the first two bits of l are 01 and
the first two bits of u are 10, we can perform a bit shift, without sending
any bits of the codeword. Whenever the first bit in both l and u then
become the same we can, besides that bit, also send one extra inverted
bit because we are then sure of if the codeword should have 01 or 10.

14/38

Interval scaling

We now get three cases

1. The interval is completely in [0, 2m−1 − 1], ie the most significant bit
in both l (j) and u(j) is 0. Shift out the most significant bit of l (j) and
u(j) and send it. Shift a 0 into l (j) and a 1 into u(j).

2. The interval is completely in [2m−1, 2m − 1], ie the most significant
bit in both l (j) and u(j) is 1. The same operations as in case 1.

3. We don’t have case 1 or 2, but the interval is completely in
[2m−2, 2m−1 + 2m−2 − 1], ie the two most significant bits are 01 in
l (j) and 10 in u(j). Shift out the most significant bit from l (j) and
u(j). Shift a 0 into l (j) and a 1 into u(j). Invert the new most
significant bit in l (j) and u(j). Don’t send any bits, but keep track of
how many times we do this kind of rescaling. The next time we do a
rescaling of type 1, send as many extra ones as the number of type 3
rescalings. In the same way, the next time we do a rescaling of type
2 we send as many extra zeros as the number of type 3 rescalings.

15/38

Finishing the codeword

When we have coded our n symbols we finish the codeword by sending all
m bits in l (n) (actually, any number between l (n) and u(n) will work). If
we have any rescalings of type 3 that we haven’t taken care of yet, we
should add that many inverted bits after the first bit.

For example, if l (n) = 11010100 and there are three pending rescalings of
type 3, we finish off the codeword with the bits 10001010100.

16/38

Demands on the precision

We must use a datatype with at least m + k bits to be able to store
partial results of the calculations.

We also see that the smallest interval we can have without performing a
rescaling is of size 2m−2 + 2, which for instance happens when
l (j) = 2m−2 − 1 and u(j) = 2m−1.
m must be large enough, so that we can always fit all the L subintervals
inside this interval. A necessary (but not sufficient) condition is thus

L ≤ 2m−2 + 2

For the algorithm to work, u(j) can never be smaller than l (j) (the same
value is allowed, because when we do a rescaling we shift zeros into l and
ones into u). In order for this to be true, all intervals of the fixed point
version of the cumulative distribution function must fulfill (with a slight
overestimation)

F (i)− F (i − 1) ≥ 2k−m+2 ; i = 1, . . . , L

17/38

Decoding

Start the decoder in the same state (ie l = 0 and u = 2m − 1) as the
coder. Introduce t as the m first bits of the bit stream (the codeword).
At each step we calculate the number

b (t − l + 1) · 2k − 1

u − l + 1
c

Compare this number to F to see what probability interval this
corresponds to. This gives one decoded symbol. Update l and u in the
same way that the coder does. Perform any needed shifts (rescalings).
Each time we rescale l and u we also update t in the same way (shift out
the most significant bit, shift in a new bit from the bit stream as new
least significant bit. If the rescaling is of type 3 we invert the new most
significant bit.) Repeat until the whole sequence is decoded.

Note that we need to send the number of symbols coded as side
information, so the decoder knows when to stop decoding.
Alternatively we can introduce an extra symbol into the alphabet, with
lowest possible probability, that is used to mark the end of the sequence.

18/38

Adaptive arithmetic coding

Arithmetic coding is relatively easy to make adaptive, since we only have
to make an adaptive probability model, while the actual coder is fixed.

Unlike Huffman coding we don’t have to keep track of a code tree. We
only have to estimate the probabilities for the different symbols by
counting how often they have appeared.

It is also relatively easy to code memory sources by keeping track of
conditional probabilities.

19/38

Example

Memoryless model, A = {a, b}. Let na and nb keep track of the number
of times a and b have appeared earlier. The estimated probabilities are
then

p(a) =
na

na + nb
, p(b) =

nb
na + nb

Suppose we are coding the the sequence aababaaabba...

Starting values: na = nb = 1.

Code a, with probabilities p(a) = p(b) = 1/2.

Update: na = 2, nb = 1.

Code a, with probabilities p(a) = 2/3, p(b) = 1/3.
Update: na = 3, nb = 1.

20/38

Example, cont.

Code b, with probabilities p(a) = 3/4, p(b) = 1/4.

Update: na = 3, nb = 2.

Code a, with probabilities p(a) = 3/5, p(b) = 2/5.

Update: na = 4, nb = 2.

Code b, with probabilities p(a) = 2/3, p(b) = 1/3.

Update: na = 4, nb = 3.

et cetera.

21/38

Example, cont.

Markov model of order 1, A = {a, b}. Let na|a, nb|a, na|b and nb|b keep
track of the number of times symbols have appeared, given the previous
symbol. The estimated probabilities are then

p(a|a) =
na|a

na|a + nb|a
, p(b|a) =

nb|a
na|a + nb|a

p(a|b) =
na|b

na|b + nb|b
, p(b|b) =

nb|b
na|b + nb|b

Suppose that we are coding the sequence aababaaabba...

Assume that the symbol before the first symbol was an a.

Starting values: na|a = nb|a = na|b = nb|b = 1.

Code a, with probabilities p(a|a) = p(b|a) = 1/2.

Update: na|a = 2, nb|a = 1, na|b = 1, nb|b = 1.

22/38

Example, cont.

Code a, with probabilities p(a|a) = 2/3, p(b|a) = 1/3.

Update: na|a = 3, nb|a = 1, na|b = 1, nb|b = 1.

Code b, with probabilities p(a|a) = 3/4, p(b|a) = 1/4.

Update: na|a = 3, nb|a = 2, na|b = 1, nb|b = 1.

Code a, with probabilities p(a|b) = 1/2, p(b|b) = 1/2.

Update: na|a = 3, nb|a = 2, na|b = 2, nb|b = 1.

Code b, with probabilities p(a|a) = 3/5, p(b|a) = 2/5.

Update: na|a = 3, nb|a = 3, na|b = 2, nb|b = 1.

et cetera.

23/38

Updates

The counters are updated after coding the symbol. The decoder can
perform exactly the same updates after decoding a symbol, so no side
information about the probabilities is needed.

If we want more recent symbols to have a greater impact on the
probability estimate than older symbols we can use a forgetting factor.

For example, in our first example, when na + nb > N we divide all
counters with a factor K :

na 7→ d
na
K
e , nb 7→ d

nb
K
e

Depending on how we choose N and K we can control how fast we
forget older symbols, ie we can control how fast the coder will adapt to
changes in the statistics.

24/38

Implementation

Instead of estimating and scaling the cumulative distribution function to
k bits fixed point precision, you can use the counters directly in the
interval calculations. Given the alphabet {1, 2, . . . , L} and counters
n1, n2, . . . , nL, calculate

F (i) =
i∑

k=1

nk

F (L) will also be the total number of symbols seen so far.

The iterative interval update can then be done as

l (n) = l (n−1) + b (u(n−1) − l (n−1) + 1)F (xn − 1)

F (L)
c

u(n) = l (n−1) + b (u(n−1) − l (n−1) + 1)F (xn)

F (L)
c − 1

Instead of updating counters after coding a symbol we could of course
just update F .

25/38

Demands on the counters

Redoing our calculations for the demands on the cumulative distribution
function, we arrive at

ni = F (i)− F (i − 1) ≥ F (L) · 22−m ; i = 1, . . . , L

Since we want to be able to have ni = 1, this gives us

F (L) ≤ 2m−2

This gives us a limit on how much data we can code before we need to
rescale the counters.

For example, if we have m = 16, we must rescale the counters at least
every time the sum of the counters becomes 214 = 16384. In most
practical situations it is better to rescale even more often than this.

26/38

Prediction with Partial Match (ppm)

If we want to do arithmetic coding with conditional probabilities, where
we look a many previous symbols (corresponding to a Markov model of
high order) we have to store many counters.

Instead of storing all possible combinations of previous symbols (usually
called contexts), we only store the ones that have actually happened. We
must then add an extra symbol (escape) to the alphabet to be able to
tell when something new happens.

In ppm contexts of different lengths are used. We choose a maximum
context length N (some variants allow unbounded context lengths).
When we are about to code a symbol we first look at the longest context.
If the symbol has appeared before in that context we code the symbol
with the corresponding estimated probability, otherwise we code an
escape symbol and continue with a smaller context. If the symbol has
not appeared at all before in any context, we code the symbol with a
uniform distribution.

After coding the symbol we update the counters of the contexts and
create any possible new contexts.

27/38

ppm cont.

There are many variants of ppm. The main difference between them is
how the counters (the probabilities) for the escape symbol are handled.

Assume that nj is the number of times we have seen symbol j in the
current context and nesc is a counter for the escape symbol in the
current context. One simple way of estimating the symbol probabilities
p(j) and the escape probability p(esc) is by

p(j) =
nj

nesc +
∑L

i=1 ni
, p(esc) =

nesc

nesc +
∑L

i=1 ni

Some variants:

I Always keep nesc = 1

I Treat the escape symbol as a regular symbol, ie nesc counts how
many times we have coded the escape symbol in this context.

28/38

ppm, exclusions

When we code an escape symbol we know that the next symbol can’t be
any of the symbols that have appeared in that context before. These
symbols can therefore be excluded when coding with a shorter context, ie
we temporarily set the probability of those symbols to 0.

Another thing to consider is update exclusion. When coding a symbol in
a context, should we also update the probability for that symbol in the
shorter contexts or not? Experiments have shown that if we use a
maximum context length, then update exclusion gives a slightly better
performance (ie lower rate). For variants of ppm where we have
unbounded context lengths, update exclusion might not give a better
performance.

29/38

Compression of test data

world192.txt alice29.txt xargs.1

original size 2473400 152089 4227
pack 1558720 87788 2821
Adaptive arithmetic, order 0 1528235 86691 2628
Adaptive arithmetic, order 1 1126126 66160 2219
Adaptive arithmetic, order 2 882201 55135 2378
ppmd 374361 38654 1512

pack is a memoryless static Huffman coder.

30/38

Compression of test data

The same data as the previous slide, but with performance given as bits
per character. A comparison is also made with some estimated entropies.

world192.txt alice29.txt xargs.1

original size 8 8 8
pack 5.04 4.62 5.34
Adaptive arithmetic, order 0 4.94 4.56 4.97
Adaptive arithmetic, order 1 3.64 3.48 4.20
Adaptive arithmetic, order 2 2.85 2.90 4.50
ppmd 1.21 2.03 2.86
H(Xi) 5.00 4.57 4.90
H(Xi |Xi−1) 3.66 3.42 3.20
H(Xi |Xi−1,Xi−2) 2.77 2.49 1.55

31/38

Binary arithmetic coders

Any distribution over an alphabet of arbitrary size can be described as a
sequence of binary choices, so it is no big limitation to letting the
arithmetic coder work with a binary alphabet.

Having a binary alphabet will simplify the coder. When coding a symbol,
either the lower or the upper limit will stay the same.

32/38

Binarization, example

Given the alphabet A = {a, b, c , d} with symbol probabilities
p(a) = 0.6, p(b) = 0.2, p(c) = 0.1 and p(d) = 0.1 we could for instance
do the following binarization, described as a binary tree:

s s s
s s s s

�
��

�
��

��
�

HHH
HHH

HHH

a

b

c d

0.6 0.4

0.5 0.5

0.5 0.5

This means that a is replaced by 0, b by 10, c by 110 and d by 111.
When coding the new binary sequence, start at the root of the tree.
Code a bit according to the probabilities on the branches, then follow the
corresponding branch down the tree. When a leaf is reached, start over
at the root.

We could of course have done other binarizations.

33/38

The MQ coder

The MQ coder is a binary arithmetic coder used in the still image coding
standards JBIG2 and JPEG2000. Its predecessor the QM coder is used in
the standards JBIG and JPEG.

In the MQ coder we keep track of the lower interval limit (called C) and
the interval size (called A). To maximally use the precisions in the
calculations the interval is scaled with a factor 2 (corresponding to a bit
shift to the left) whenever the interval size is below 0.75. The interval
size will thus always be in the range 0.75 ≤ A < 1.5.

When coding, the least probable symbol (LPS) is normally at the bottom
of the interval and the most probable symbol (MPS) on top of the
interval.

34/38

The MQ coder, cont.

If the least probable symbol (LPS) has the probability Qe , the updates of
C and A when coding a symbol are:

When coding a MPS:

C (n) = C (n−1) + A(n−1) · Qe

A(n) = A(n−1) · (1− Qe)

When coding a LPS:

C (n) = C (n−1)

A(n) = A(n−1) · Qe

Since A is always close to 1, we do the approximation A · Qe ≈ Qe .

35/38

The MQ coder, cont.

Using this approximation, the updates of C and A become

When coding a MPS:

C (n) = C (n−1) + Qe

A(n) = A(n−1) − Qe

When coding a LPS:

C (n) = C (n−1)

A(n) = Qe

Thus we get an arithmetic coder that is multiplication free, which makes
it easy to implement both in soft- and hardware.

Note that because of the approximation, when A < 2Qe we might
actually get the situation that the LPS interval is larger than the MPS
interval. The coder detects this situation and then simply switches the
intervals between LPS and MPS.

36/38

The MQ coder, cont.

The MQ coder typically uses fixed point arithmetic with 16 bit precision,
where C and A are stored in 32 bit registers according to

C : 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx
A : 0000 0000 0000 0000 aaaa aaaa aaaa aaaa

The x bits are the 16 bits of C and the a bits are the 16 bits of A.

By convention we let A = 0.75 correspond to 1000 0000 0000 0000. This
means that we should shift A and C whenever the 16:th bit of A
becomes 0.

37/38

The MQ coder, cont.

C : 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx
A : 0000 0000 0000 0000 aaaa aaaa aaaa aaaa

b are the 8 bits that are about to be sent as a byte next. Each time we
shift C and A we increment a counter. When we have counted to 8 bits
we have accumulated a byte. s is to ensure that we don’t send the 8
most recent bits. Instead we get a short buffer in case of carry bits from
the calculations. For the same reason we have c . If a carry bit
propagates all the way to c we have to add one to the previous byte. In
order for this bit to not give rise to carry bits to even older bytes a zero is
inserted into the codeword every time a byte of all ones is found. This
extra bit can be detected and removed during decoding.

Compare this to our previous solution for the 01 vs 10 situation.

38/38

Probability estimation

In JPEG, JBIG and JPEG2000 adaptive probability estimations are used.
Instead of having counters for how often the symbols appear, a state
machine is used, where every state has a predetermined distribution (ie
the value of Qe) and where we switch state depending on what symbol
that was coded.

