
1/34

Adaptive Huffman coding

If we want to code a sequence from an unknown source using Huffman
coding, we need to know the probabilities of the different symbols.

Most straightforward is to make two passes over the sequence. First we
calculate statistics of the different symbols and then we use the
estimated probabilities to code the source.

Instead we would like to do everything in one pass. In addition we would
like to have a method that automatically adapts if the statistics of the
source changes.

2/34

Adaptive Huffman coding, cont.

Simple method:

1. Start with a maximally “flat” code tree.

2. Code N symbols from the source and at the same time gather
statistics, ie count how many times each symbol appears. Build a
new Huffman tree with the new estimated probabilities.

3. Repeat from 2.

No side information about the tree structure need to be transmitted,
since the decoder has access to the same data as the coder.

The smaller N is chosen to be, the faster the coder adapts to a change in
source statistics. On the other hand we have to construct a new Huffman
tree more often which takes time.

3/34

Adaptive Huffman coding, cont.

Smarter method: Adjust the code tree after each coded symbol. We
need to keep track of some extra information in each node of the tree.

A binary tree with L leaves has 2L− 1 nodes.

Give each node a number between 1 and 2L− 1.

Each node has a weight. For a leaf (outer node) the weight is the
number of times the corresponding symbol has appeared (cf. probability).
For an inner node the weight is the sum of the weights of its children.

If node j has the weight wj we need

w1 ≤ w2 ≤ . . . ≤ w2L−1

Nodes with number 2j − 1 and 2j should have the same parent and the
parent should have a higher number than its children.

Trees with these properties are huffman trees.

4/34

Adaptive Huffman coding, cont.

Start with a maximally flat code tree (corresponding to a fixlength code
if L = 2k). The weight in each leaf is set to 1, and the weight in each
inner node is set to the sum of its children’s weights. Enumerate the
nodes so that the requirements are met.

For each symbol to be coded:

1. Send the codeword corresponding to the symbol.

2. Go to the symbol’s corresponding node.

3. Consider all nodes with the same weight as the current node. If the
current node is not the node with highest number we switch places
(ie move weight, pointers to children and possible symbol) between
the current node and the node with highest number.

4. Increase the weight of the current node by 1.

5. If we are in the root node we are done, otherwise move to the parent
of the current node and repeat from 3.

5/34

Adaptive Huffman coding, cont.

Since the update of the tree is done after coding a symbol, the decoder
can do the same update of the code after decoding a symbol. No side
information about the tree needs to be transmitted.

One variant is to not start with a full tree. Instead we introduce an extra
symbol (NYT, Not Yet Transmitted) and start with a “tree” that only
contains that symbol, with weight 0 and number 2L− 1.

When you code a symbol that hasn’t been seen before it is coded with
the codeword for NYT, followed by a fixlength codeword for the new
symbol. The old NYT node is then split into two branches, one for the
NYT symbol and one for the new symbol. The new NYT node keeps the
weight 0, the new symbol node gets the weight 1. If the new symbol is
the last symbol not yet coded in the alphabet we don’t need to split, we
can just replace NYT with the new symbol.

6/34

Modified algorithm

1. If the symbol hasn’t been coded before, transmit the codeword for
NYT followed by a fixlength codeword for the new symbol, otherwise
transmit the codeword corresponding to the symbol.

2. If we coded a NYT split the NYT node into two new leaves, one for
NYT with weight 0 and one for the new symbol with weight 1. The
node numbers for the new nodes should be the two largest unused
numbers. If it was the last not yet coded symbol we don’t have to
split, just replace NYT with the new symbol.

3. Go to the symbol’s corresponding node (the old NYT node if we
split).

4. Consider all nodes with the same weight as the current node, except
its parent. If the current node is not the node with highest number
we switch places (ie move weight, pointers to children and possible
symbol) between the current node and the node with highest
number.

5. Increase the weight of the current node by 1.

6. If we are in the root node we are done, otherwise move to the parent
of the current node and repeat from 4.

7/34

Forgetting factor

If we want the coding to depend more on more recent symbols than on
older symbol we can use a forgetting factor.

When the weight of the root node is larger than N we divide the weight
in all nodes with K .

If we want to keep the weights as integers we have to divide the weights
of all leaf nodes by K (round up) and then add up the weights from the
children to the parents, all the way to the root node.

Because of the rounding, the rescaled tree might no longer be a proper
Huffman tree. To solve this, the code tree has to be rebuilt after the
rescaling.

Depending on how we choose N and K we can adjust the speed of
adaptation. Large K and small N give fast adaptation and vice versa.

8/34

Run-length coding

Sometimes we have sources that produce long partial sequences
consisting of the same symbol. It can then be practical to view the
sequence as consisting of runs instead of symbols. A run is a tuple
describing what symbol that is in the run and how long the run is.

For example, the sequence

aaaabbbbbbbccbbbbaaaa

can be described as

(a, 4)(b, 7)(c , 2)(b, 4)(a, 4)

Basically we have switched to another alphabet than the original one.

The gain is that it might be easier to find a good code for the new
alphabet, and that it’s easier to take advantage of the memory of the
source.

Note that if the original alphabet is binary, we only have to send the
symbol for the first run.

9/34

Fax coding

Fax coding is a typical example when run-length coding is used.

There are two digital fax standard: Group 3 (T.4) and group 4 (T.6).

A fax machine scans a page one line at a time (1728 pixels per line for
A4 papers). Each pixel is either white or black. Typically we get runs of
alternating white and black.

A line can either be coded separately or with the help of the previous line.

10/34

Fax coding, cont.

When coding a line separately, run-length coding is used. Since the
number of possible run-lengths is big it is impractical to have a Huffman
code over all run-lengths. Instead, a run-length r is described as

r = 64 ·m + t , t = 0, . . . , 63 and m = 1, . . . , 27

An extra symbol to code the end of line (EOL) is also introduced, ie to
be used when the rest of the line has the same colour.

The first run of each line is assumed to be white.

The alphabet with different m, t and EOL is coded using static tree
codes, one each for white and black runs.

This type of coding is called MH (modified huffman).

11/34

Fax coding, cont.

Two consecutive lines are probably very similar. This can be exploited in
the coding.
A few definitions:

a0 The last pixel on a line that is know by both sender and
receiver, ie current position on the line. When coding
starts, this is an imaginary white pixel to the left of the
first pixel of the line.

a1 The first pixel to the right of a0 with the opposite colour.
Known only by the sender.

a2 The first pixel to the right of a1 with the opposite colour.
Known only by the sender.

b1 The first pixel to the right of a0 on the previous line with
the opposite colour. Known by both sender and receiver.

b2 The first pixel to the right of b1 that has the opposite
colour. Known by both sender and receiver.

12/34

Fax coding, cont.

At coding you get three cases.

1. If both b1 and b2 are between a0 and a1 the codeword 0001 is
transmitted. All pixels up to the location under b2 have the same
colour. This point will become our new a0. New b1 and b2 are
found.

2. a1 is located before b2 and the distance between b1 and a1 is no
more than 3. The distance a1 − b1, {−3,−2,−1, 0, 1, 2, 3} is coded
using the codewords
{0000010, 000010, 010, 1, 011, 000011, 00000011}. a1 becomes the
new a0.

3. I all other cases 001 is transmitted and the run-lengths from a0 to a1
and from a1 to a2 are coded using the MH code.

13/34

Fax coding, cont.

In group 3 both methods are used. With regular intervalls a line is coded
using pure one-dimensionel MH coding, so that any transmission errors
will not propagate over the whole image. This coding method is called
MR (modified READ).

In group 4 only the two-dimensional method is used. This is called MMR
(modified MR).

14/34

Monotonously decreasing distributions

When coding waveform data, such as sound or images, we often have
distributions where the alphabet consists of integers A = {0, 1, 2, 3, . . .}
(or A = {. . . ,−2,−1, 0, 1, 2, . . .}) and where the probabilities are
monotonously decreasing with increasing (absolute) values.

Instead of counting statistics and constructing tree codes we can then
often use codes where the codewords can easily be found directly from
the symbols and where small values have short codewords and large
values have long codewords.

15/34

The unary code (the Umbra code)

The codeword for a non-negative integer n consists of n ones followed by
a zero.

Symbol codeword
0 0
1 10
2 110
3 1110
4 11110
...

...

The unary code achieves the entropy bound for the dyadic distribution
p(i) = 2−(i+1)

In some applications long sequences of ones are not desirable. Then you
can use the reverse definition, where the codeword is n zeros followed by
a one.

16/34

Golomb codes

A = {0, 1, 2, . . .}

Choose the parameter m. In practice, m is usually chosen to be an integer
power of two, but it can be any positive integer. Golomb codes where m
is an integer power of two are sometimes referred to as Rice codes.

Represent the integer n with q = b nmc and r = n − qm.

Code q with a unary code.

If m is an integer power of two, code r binary with logm bits.

If m is not an integer power of two:
0 ≤ r < 2dlogme −m Code r binary with blogmc bits

2dlogme −m ≤ r ≤ m − 1 Code r + 2dlogme −m
binary with dlogme bits

(This type of code is called a truncated binary code.)

17/34

Examples of Golomb codes

Symbol m = 1 m = 2 m = 3 m = 4
0 0 0 0 0 0 0 00
1 10 0 1 0 10 0 01
2 110 10 0 0 11 0 10
3 1110 10 1 10 0 0 11
4 11110 110 0 10 10 10 00
5 111110 110 1 10 11 10 01
6 1111110 1110 0 110 0 10 10
...

...
...

...
...

Golomb codes are optimal for geometric distributions

p(i) = s i · (1− s) ; 0 < s < 1

if we choose m = d− 1
log s e

Golomb codes are for instance used in the image coding standard
JPEG-LS and in the video coding standard H.264.

18/34

Exp-Golomb codes

A = {0, 1, 2, . . .}

Choose the parameter m = 2k , k non-negative integer.

Calculate s = blog2(n + m)c.

Code s − k with a unary code.

Code n − 2s + m binary with s bits.

19/34

Examples of Exp-Golomb codes

Symbol k = 0 k = 1 k = 2
0 0 0 0 0 00
1 10 0 0 1 0 01
2 10 1 10 00 0 10
3 110 00 10 01 0 11
4 110 01 10 10 10 000
5 110 10 10 11 10 001
6 110 11 110 000 10 010
7 1110 000 110 001 10 011
8 1110 001 110 010 10 100
9 1110 010 110 011 10 101

10 1110 011 110 100 10 110
...

...
...

...

Exp-Golomb codes are for instance used in i H.264.

20/34

Test image Goldhill

512× 512 pixels, 8 bits/pixel

21/34

Simple Huffman coding

Histogram for Goldhill:

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

Huffman coding gives an average data rate of 7.50 bits/pixel
The longest codeword is 16 bits, the shortest codeword is 7 bits.
We haven’t used any of the dependence between pixels.

22/34

Simple prediction

Instead of coding the pixels directly, we code the difference in pixel value
between a pixel and the pixel above it. Imaginary pixels outside of the
image are assumed to be medium gray, ie have the value 128. The
smallest difference is -112, The largest difference is 107.

23/34

Huffman coding of differences

Histogram of differences:

−150 −100 −50 0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Huffman coding of the differences gives an average data rate of 5.34
bits/pixel.
The longest codeword is 18 bits, the shortest codeword is 4 bits.

24/34

Golomb coding I

We must first modify the values so that we only have non-negative
values. This can for instance be done using the mapping

F (x) =

{
2x ; x ≥ 0

−2x − 1 ; x < 0

ie the negative numbers are mapped to odd positive numbers and the
positive numbers are mapped to even positive numbers.

F−1(x) =

{
x
2 ; x even
− x+1

2 ; x odd

25/34

Golomb coding I, cont.

Histogram for modified differences

−50 0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

The best Golomb code is the one with parameter m = 10, which gives an
average data rate of 5.37 bits/pixel.

26/34

Golomb coding II

Alternatively we can code the absolute value of the differences with a
Golomb code and then send an extra sign bit for each non-zero value.
Histogram for the absolute value of differences

−50 0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

The best Golomb code is the one with parameter m = 5, which gives an
average data rate of 5.40 bits/pixel.

27/34

Lossless JPEG

JPEG is normally an image coding method that gives distortion, but
there is also a lossless mode in the standard.

The pixels are coded row-wise from the top down.

The pixel Iij on position (i , j) is predicted from neighbouring pixels.
There are 7 predictors to choose from:
1. Îij = Ii−1,j
2. Îij = Ii,j−1
3. Îij = Ii−1,j−1
4. Îij = Ii,j−1 + Ii−1,j − Ii−1,j−1
5. Îij = Ii,j−1 + b(Ii−1,j − Ii−1,j−1)/2c
6. Îij = Ii−1,j + b(Ii,j−1 − Ii−1,j−1)/2c
7. Îij = b(Ii,j−1 + Ii−1,j)/2c

28/34

Lossless JPEG, cont.

The difference dij = Iij − Îij is coded either by an adaptive arithmetic
coder, or using a Huffman code.
Huffman coding is not performed directly on the differences. Instead
cathegories

kij = dlog(|dij |+ 1)e

are formed. Statistics for the cathegories are calculated and a Huffman
tree is constructed.
The codeword for a difference dij consists of the Huffman codeword for
kij plus kij extra bits used to exactly specify dij .

kij dij extra bits
0 0 −
1 −1, 1 0, 1
2 −3,−2, 2, 3 00, 01, 10, 11
3 −7, . . . ,−4, 4, . . . , 7 000, . . . , 011, 100, . . . , 111
...

...
...

29/34

Lossless JPEG, cont.

Coding Goldhill using lossless JPEG:
Predictor 1 5.39 bits/pixel
Predictor 2 5.42 bits/pixel
Predictor 3 5.80 bits/pixel
Predictor 4 5.27 bits/pixel
Predictor 5 5.16 bits/pixel
Predictor 6 5.15 bits/pixel
Predictor 7 5.13 bits/pixel

For different images different predictors will work best. The standard
supports coding different parts of an image with different predictors.

30/34

JPEG-LS

Standard for lossles and near lossless coding of images. Near lossless
means that we allow the pixel values of the decoded image to be a little
different from the original pixels.

The pixels are coded row-wise from the top down.

When pixel (i , j) is to be coded you first look at the surrounding pixels in
position (i , j − 1), (i − 1, j − 1), (i − 1, j) and (i − 1, j + 1). A context is
formed by first calculating the gradients

D1 = Ii−1,j+1 − Ii−1,j

D2 = Ii−1,j − Ii−1,j−1

D3 = Ii−1,j−1 − Ii,j−1

31/34

JPEG-LS, cont.

The gradients Dk are quantized to three integers Qk such that
−4 ≤ Qk ≤ 4. The quantizer bounds can be chosen by the coder. Each
Qk takes 9 possible values, which means that we have 729 possible
combinations. A pair of combinations with inverted signs counts as the
same context which finally gives us 365 different contexts.

A median edge detector (MED) prediction of Iij is done according to:

If Ii−1,j−1 ≥ max(Ii,j−1, Ii−1,j)⇒ Îij = min(Ii,j−1, Ii−1,j)

if Ii−1,j−1 ≤ min(Ii,j−1, Ii−1,j)⇒ Îij = max(Ii,j−1, Ii−1,j)

Otherwise: Îij = Ii,j−1 + Ii−1,j − Ii−1,j−1

For each context q we keep track if the prediction has a systematic error,
if that is the case the prediction is adjusted a little in the correct
direction.

32/34

Prediction error

MED prediction (left) compared to simple plane prediction (right).

33/34

JPEG-LS, cont.

The difference between the real pixel value and the predicted value
dij = Iij − Îij is coded using a Golomb code with parameter m = 2kq . For
each context q we keep track of the best Golomb code, and each kq is
constantly adjusted during the coding process.

The coder also detects if we get long runs of the same value on a row. In
that case the coder switches to coding run-lengths instead.

If we code Goldhill using JPEG-LS we get an average data rate of 4.71
bits/pixel.

34/34

FLAC (Free Lossless Audio Coding)

Lossless coding of audio signals.

The audio signal is split into blocks (typically a couple of thousand
samples each).

Code the sum/difference of the two stereo channels if this gives a higher
compression.

Linear predictors are optimized for each block. There is also a possibility
to use fixed predictors (compare to lossless JPEG).

The prediction error is coded using Rice codes.

Resulting compression ratio around 2, of course depending a lot on the
type of audio coded.

https://xiph.org/flac/

