
1/15

Optimal codes

A tree code is called optimal (for a given probability distribution) if no
other code with a lower mean codeword length exists.

There are of course several codes with the same mean codeword length.
The simplest example is to just switch all ones to zeros and all zeros to
ones in the codewords.

You can always switch the places of two nodes of the code tree at the
same depth and still have a code with the same mean codeword length,
since all codewords will still have the same lengths.

Even codes with different sets of codeword lengths can have the same
mean codeword length.

2/15

Upper bound for optimal codes

Given that we code one symbol at a time, an optimal code satisfies
l̄ < H(Xj) + 1

Let li = d− log pie. We have that − log pi ≤ d− log pie < − log pi + 1.

L∑
i=1

2−li =
L∑

i=1

2−d− log pie

≤
L∑

i=1

2log pi

=
L∑

i=1

pi = 1

Kraft’s inequality is satisfied, therefore a tree code with the given
codeword lengths exists.

3/15

Upper bound for optimal codes, cont.

What’s the mean codeword length of this code?

l̄ =
L∑

i=1

pi · li =
L∑

i=1

pi · d− log pie

<

L∑
i=1

pi · (− log pi + 1)

= −
L∑

i=1

pi · log pi +
L∑

i=1

pi = H(Xj) + 1

An optimal code can’t be worse than this code, then it wouldn’t be
optimal. Thus, the mean codeword length for an optimal code also
satisfies l̄ < H(Xj) + 1.

NOTE: If pi = 2−ki ,∀i for integers ki , we can construct a code with
codeword lengths ki and l̄ = H(Xj).

4/15

Bounds

We have showed that for a memoryless source where we code one symbol
at a time there exists prefix codes that satisfy

H(Xj) ≤ R = l̄ < H(Xj) + 1

The result can easily be generalized to sources with memory where we
code n symbols at a time. We then get

H(Xj ,Xj+1, . . . ,Xj+n−1) ≤ l̄ < H(Xj ,Xj+1, . . . ,Xj+n−1) + 1

R =
l̄

n

1

n
· H(Xj ,Xj+1, . . . ,Xj+n−1) ≤ R <

1

n
· H(Xj ,Xj+1, . . . ,Xj+n−1) +

1

n

By coding multiple symbols with each codeword we can get arbitrarily
close to the entropy limit, both while coding sources with memory and
when coding memoryless sources.

5/15

Necessary conditions

Assume that we code one symbol from the alphabet A = {a1, . . . , aL}
with each codeword, and that the codeword lengths are l1, . . . , lL.
Necessary conditions for the code to be optimal are

1. If p(ai) ≤ p(aj) then li ≥ lj .

2. The two least probable symbols have codewords of the same length.

3. In the code tree of an optimal code there must be two branches
from each inner node.

4. Suppose that we change an inner node in the tree to a leaf by
combining all leaves descending from it to a single symbol in a
reduced alphabet. If the original tree was optimal for the original
alphabet then the reduced tree is optimal for the reduced alphabet.

6/15

Necessary conditions, cont.

1. If not, we could switch codewords between the two symbols and get
a code with lower mean codeword length.

2. Suppose we have a prefix code where the two least probable symbols
have different codeword lengths. We can then create a new code by
removing the last bits in the longer codeword so that the two
codewords have the same length. The new set of codewords is still a
prefix code, since according to 1 there are no codewords that are
longer. The new code has a lower mean codeword length, and thus
the original code is not optimal.

3. Suppose that a prefix code has an inner node with only one branch.
We can then remove that branch and move up the subtree
underneath it one level. This new code is still a prefix code, and it
has a lower mean codword length. Thus the original code can not be
optimal.

4. If the reduced code wasn’t optimal we could construct a new code
for the reduced alphabet and then expand the reduced symbol again
so that we get a new code with lower mean codeword length than
the original code.

7/15

Huffman coding

A simple method for constructing optimal tree codes.

Start with symbols as leaves.

In each step connect the two least probable nodes to an inner node. The
probability for the new node is the sum of the probabilities of the two
original nodes. If there are several nodes with the same probability to
choose from it doesn’t matter which ones we choose.

When we have constructed the whole code tree, we create the codewords
by setting 0 and 1 on the branches in each node. Which branch that is
set to 0 and which that is set to 1 doesn’t matter.

8/15

Huffman codes

Assume that the most probable symbol for a memoryless source Xk has
the probability pmax. It can be shown that the mean codeword length for
a Huffman code satisfies

l̄ <

{
H(Xk) + pmax ; pmax ≥ 0.5
H(Xk) + pmax + 0.086 ; pmax < 0.5

Compare this to our earlier upper bound

l̄ < H(Xk) + 1

9/15

Extended Huffman codes

For small alphabets with skewed distributions, or for sources with
memory, a Huffman code can be relatively far from the entropy limit.
This can often be improved by extending the source, ie by coding several
symbols at a time with each codeword.

The maximum redundancy (the difference between the data rate and the
entropy) decreases as 1

n when we code n symbols at a time.

Note that extension doesn’t guarantee that the data rate decreases, just
that the upper bound comes closer to the lower bound.

10/15

Extra information

Normally we have to transmit the Huffman tree to the receiver, which
will require extra data.

So far we have assumed that we code such a long sequence from the
source that the cost for the Huffman tree can be neglected. In practical
applications this is not always the case.

Straightforward method: For each symbol in the alphabet we first send
the codeword length and then the actual codeword. With an alphabet of
size L we can never have a Huffman codeword of length longer than
L− 1. We will thus need L · dlog(L− 1)e+

∑
i li extra bits.

Smarter method: Just find the codeword lengths li using the Huffman
algorithm. Given these lengths we construct a new tree code. The
decoder can use the same method to construct a tree code, which means
we will only have to transmit the codeword length for each symbol, which
requires L · dlog(L− 1)e extra bits.

11/15

Huffman tree from codeword lengths

When constructing a code tree from codeword lengths we always have to
assign the codewords in increasing length order. Typically the codewords
are assigned in lexicographic order, so that the first codeword consists of
all zeroes (or all ones).
Consider a Huffman tree where the codewords have been assigned
according to this principle. For instance if we have four symbols and the
codeword lengths 1, 2, 3 and 3, the codewords are 0, 10, 110, 111 which
corresponds to the tree

s s s
s s s s

��
�

��
�

�
��

H
HHH

HHHHH

if we let the 0-branches go left and the 1-branches go right.

12/15

Huffman tree from codeword lengths

If we denote each node with the path there from the root

s s s
s s s s

��
�

��
�

��
�

HH
HHH

HHHH

0

10

110 111

1

11

or, if we write the binary numbers in decimal

s s s
s s s s

��
�

��
�

�
��

H
HHH

HHH
HH

0

2

6 7

1

3

13/15

Huffman tree from codeword lengths

Taking a step to the right in the tree at the same depth gives that the
value of the node increases by one. Taking a step downwards along the
0-branch doubles the value.

An algorithm that assigns codewords given codeword lengths can be
described like this:

Assign the codewords in increasing length order. We start by giving the
shortest codeword the value 0. This means we put this codeword furthest
to the left at the depth of the tree corresponding to the codeword length.
For each new codeword we take a step to the right at the same depth of
the tree, ie we increase the value by one. If the new codeword has the
same length as the previous one, the codeword is the new value.
Otherwise, move down along the 0-branch until we get to the correct
depth. Each step downwards corresponds to a multiplication of the value
by 2. Repeat until we have assigned all codewords.

14/15

Huffman tree from codeword lengths

In pseudo code, given sorted codeword lengths length[] =
{l0 l1 l2 ... lL−1}

c = 0;

code[0] = c;

for i=1 to L-1

c = c+1;

c = c*2^(length[i]-length[i-1]);

code[i] = c;

end

The codeword for symbol k is the number code[k] written as a binary
number with length[k] bits.
Note that the algorithm uses sorted lengths. We also have to keep track
of which symbol that corresponds to each codeword.

15/15

Huffman tree from codeword lengths

Alternatively, if we prefer to assign the codewords in reverse lexicographic
order (the shortest codeword is all ones and the longest codeword is all
zeros), we can use the following pseudo code.

c = 2^length[0]-1;

code[0] = c;

for i=1 to L-1

c = c*2^(length[i]-length[i-1]);

c = c-1;

code[i] = c;

end

The codeword for symbol k is the number code[k] written as a binary
number with length[k] bits.

