
1/69

Coding with distortion

We have a signal xn, n = 1 . . .N to code. The alphabet is a subset of
the real numbers A ⊆ R. The alphabet can be continuous.

If we don’t have the demand that the decoded signal should be exactly
the same as the original signal we can get a lower data rate than if we
have lossless coding. Typically the signal is described using a smaller
alphabet than the original signal uses (quantization).

In the case where the original alphabet is continuous, in general an
infinite number of bits is required to describe the signal losslessly.

The more bits that are used, the closer to the original signal the decoded
signal x̂n will be.

2/69

Distortion measure

We need a measure of how much error we have in the decoded signal, the
so called distortion.

The most common measure is a quadratic error measure, combined with
averaging over the whole sequence

D =
1

N

N∑
n=1

(xn − x̂n)2

This is the mean square error of the decoded sequence.

3/69

Distortion measure, cont.

Often we want to consider the distortion (or noise power) relative to the
signal power, the so called signal to noise ratio (SNR)

σ2
x =

1

N

N∑
n=1

x2
n

SNR =
σ2
x

D

SNR is usually expressed in dB

SNR = 10 · log10

σ2
x

D

4/69

PSNR

When coding still images and video we usually use the peak-to-peak
signal to noise ratio (PSNR)

PSNR = 10 · log10

x2
pp

D

where xpp is the difference between the maximum and minum values of
the signal.

For example, if the data to be coded is a grayscale image quantized to 8
bits, the signal can assume values between 0 and 255. The PSNR is then

PSNR = 10 · log10

2552

D

5/69

Random signal models

A signal can be modelled as an amplitude continuous stationary random
process Xn, with distribution function FX (x) and density function fX (x).

FX (x) = Pr(X ≤ x)

fX (x) =
d

dx
FX (x)

fX (x) ≥ 0 , ∀x∫ ∞
−∞

fX (x)dx = 1

Pr(a ≤ X ≤ b) = FX (b)− FX (a) =

∫ b

a

fX (x)dx

6/69

Random signal models, cont.

Mean value

mX = E{Xn} =

∫ ∞
−∞

x · fX (x)dx

Quadratic mean value

E{X 2
n } =

∫ ∞
−∞

x2 · fX (x)dx

Variance
σ2
X = E{(Xn −mx)2} = E{X 2

n } −m2
x

In most of our cases we will use signal models with mean value 0. In
those cases the variance is equal to the quadratic mean value.

The variance (or rather the quadratic mean value) is a measure of the
signal power.

7/69

Common distributions

Uniform distribution

fX (x) =

{
1

b−a a ≤ x ≤ b

0 otherwise

Mean value m = a+b
2 , variance σ2 = (b−a)2

12

Gaussian distribution (normal distribution)

fX (x) =
1√
2πσ

e−
(x−m)2

2σ2

Laplace distribution

fX (x) =
1√
2σ

e−
√

2|x−m|
σ

8/69

Random signal models, cont.

The dependence of the signal value in two times instances n och m is
given by the twodimensional density function fXnXm(xn, xm).

If we can write this as a product fX (xn) · fX (xm) we say that the signal in
the two time instances are independent.

A signal where all time instances are independent of each other is a
memoryless signal or a white signal.

In most cases we will describe the dependence using the correlation
E{Xn · Xm}.

If E{Xn · Xm} = E{Xn} · E{Xm} we say that the signal in the two time
instances are uncorrelated. Independent signals are uncorrelated, but the
reverse is not necessarily true.

9/69

Memory sources

Markov source of order k

f (xn|xn−1xn−2 . . .) = f (xn|xn−1 . . . xn−k)

Linear models, εn white (memoryless) noise.
AR(N)

xn =
N∑
i=1

ai · xn−i + εn

MA(M)

xn =
M∑
j=1

bi · εn−j + εn

ARMA(N,M)

xn =
N∑
i=1

ai · xn−i +
M∑
j=1

bi · εn−j + εn

10/69

Random signal models, cont.

The correlation properties of the signal is usually expressed using the
auto correlation function, which for a stationary process is given by

RXX (k) = E{XnXn+k}

The auto correlation function is symmetric: RXX (−k) = RXX (k).

We also have: |RXX (k)| ≤ RXX (0) = E{X 2
n }.

For a memoryless (white) process we have

RXX (k) = σ2
X · δ(k) =

{
σ2
X k = 0

0 otherwise

For an AR(1) process we have

RXX (k) = a|k| · σ2
X (|a| < 1)

11/69

Multidimensional signals

The auto correlation function can of course also be defined for
multidimensional signals. For instance, for a twodimensional stationary
random process Xi,j the auto correlation function is given by

RXX (k , l) = E{Xi,jXi+k,j+l}

The auto correlation function is symmetric: RXX (−k ,−l) = RXX (k, l)

We also have: |RXX (k, l)| ≤ RXX (0, 0) = E{X 2
i,j}

12/69

Random signal models, cont.

For a random signal Xn that is coded and then decoded to X̂n, the
distortion is given by

D = E{(X − X̂)2} =

∫ ∞
−∞

(x − x̂)2fX (x)dx

The signal power is (given mean zero)

E{X 2} = σ2
X + (E{X})2 = σ2

X

and SNR as before

SNR = 10 · log10

σ2
X

D

13/69

Theoretical limit

The rate-distortion function R(D) for a source gives the theoretically
lowest rate R we can use to code the source, on the condition that the
maximum allowed distortion is D. Compare to the entropy limit for
source coding.

Example: White gaussian process with variance σ2

R(D) =

{
1
2 log σ2

D 0 < D ≤ σ2

0 otherwise

Ie, if we allow a distortion that is larger than the variance of the process,
we don’t need to transmit any bits at all. The decoder can just set the
decoded signal equal to the mean value at each time instance, which will
give a distortion equal to the variance.
We can also se that R →∞ when D → 0

14/69

Gaussian source with memory

For gaussian sources with memory, the rate-distortion function can be
calculated from the power spectral density.

Φ(θ) = F{RXX (k)} =
∞∑

k=−∞

RXX (k) · e−j2πθk

The rate-distortion function is parametrically given by

R =

∫ 1/2

−1/2

max{1

2
log

Φ(θ)

λ
, 0} dθ

and

D =

∫ 1/2

−1/2

min{λ,Φ(θ)} dθ

The integration can of course be done over any interval of size 1, since
the power spectral density is a periodic function.

15/69

Quantization

Mapping from a continuous alphabet to a discrete alphabet (or mapping
from a large discrete alphabet to a smaller one). After quantization we
have a discrete signal, on which we can use our source coding methods
(Huffman, arithmetic coding, et c.)

A general M level quantizer is specified by M + 1 decision borders
bi ; i = 0 . . .M and M reconstruction levels (or reconstruction points)
yi ; i = 1 . . .M.

The quantization operator Q(x) is given by

Q(x) = yi if bi−1 < x ≤ bi

And the reconstructed signal is thus

x̂n = Q(xn)

16/69

Quantization

Sometimes it can be useful to see quantization and reconstruction as two
separate operations instead of just one operation.

Quantization: x → j such that bj−1 < x ≤ bj

Reconstruction: x̂ = yj

A sequence of x thus gives a sequence of indices j that can then be
coded by a source coder

The receiver decodes the index sequence and the maps the indices to the
corresponding reconstruction points.

17/69

Quantization, cont.

Given a random signal model the distortion is

D = E{(X − X̂)2} =

=

∫ ∞
−∞

(x − Q(x))2fX (x)dx =

=
M∑
i=1

∫ bi

bi−1

(x − yi)
2fX (x)dx

If no special source coding is used, ie if we just code the quantized signal
using a fixed length code, the rate is

R = dlog2 Me

18/69

Uniform quantization

The distance between two reconstruction points is constant

yj − yj−1 = ∆

∆ is the stepsize of the quantizer.

The reconstruction points are in the middle of their intervals, which
means that all decision regions (apart from the end intervals in some
cases) also are of the same size

bi − bi−1 = ∆

19/69

Uniform quantization, cont.

To simplify the calculations we can assume that the number of
reconstruction points is given by M = 2R and that the quantizer is
symmetric around the origin. The following results can easily be
generalized to arbitrary M.

The reconstruction point belonging to the interval [(j − 1)∆, j∆] is

yj =
2j − 1

2
∆

The simplest case is when the input distribution is uniform on the
interval [−A,A]:

∆ =
2A

M

20/69

Uniform quantization, cont.

The distortion for uniform quantization of a uniform distribution:

D =

M/2∑
i=−M/2+1

∫ i∆

(i−1)∆

(x − 2i − 1

2
∆)2 1

2A
dx = M · 1

2A
· ∆3

12
=

∆2

12

σ2
X =

(2A)2

12
=

∆2M2

12

SNR = 10 · log10

σ2
X

D
= 10 · log10 M

2 =

= 10 · log10 22R = 20 · R · log10 2 ≈ 6.02 · R

For every bit added to the quantizer (ie for every doubling of the number
of reconstruction points) we will get approximately 6 dB higher SNR.

21/69

Uniform quantization, cont.

For unlimited distributions (eg a gaussian distribution) the two end
intervals will be infinitely large (in the calculations below we assume that
that M is even and that the quantizer is symmetric around the origin).

D =

M/2∑
i=−M/2+1

∫ i∆

(i−1)∆

(x − 2i − 1

2
∆)2fX (x)dx +

+

∫ ∞
(M/2)∆

(x − M − 1

2
∆)2fX (x)dx +

+

∫ −(M/2)∆

−∞
(x − −M + 1

2
∆)2fX (x)dx

The last two terms are called the overload distortion of the quantizer.

22/69

Uniform quantization, cont.

To find the best choice of ∆ (the one that minimizes the distortion) we
have to solve

∂

∂∆
D = 0

which in the general case is a hard problem. Normally we will have to
find a numeric solution.

If the number of quantization levels M is large and ∆ is chosen so that
the overload distortion is small compared to the total distortion, the
distortion is approximately

D ≈ ∆2

12

23/69

Uniform quantization, example

Uniform quantization of a speech signal

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Original signal Quantized using ∆ = 0.1

Measured distortion: D ≈ 0.0008517
(Compare to ∆2/12 ≈ 0.0008333)

24/69

Quantization using source coding

The probability P(j) of being in interval j is

P(j) =

∫ bj

bj−1

fX (x)dx

In the general case these probabilities are different for different intervals.
We could thus get a lower rate than logM by using some form of source
coding.

Finding the optimal quantizer given an allowed rate R after source coding
is a hard problem. However, it can be shown that for sufficiently large R
(fine quantization) the optimal quantizer is a uniform quantization.
Thus, if we are using some form of source coding, it is enough to use the
simplest form of quantization.

25/69

Fine quantization

When we have fine quantization, ie when the number of quantization
levels is large, the distortion is approximatively given by

D ≈ c · σ2
X · 2−2R

where σ2
X is the signal variance, R is the rate and c is a constant

depending on the type of quantization and the distribution of the signal.

When we have fine quantization, the SNR as a function of the rate is
approximately given by

SNR = 10 · log10

σ2
X

D
≈ 6.02 · R − 10 · log10 c

26/69

Example

A mono music file is coded using a uniform quantizer (midtread),
followed by Huffman coding. The rate is varied by varying the quantizer
stepsize. No limitation of the number of levels is done. For comparison,
we have also measured the entropy of the quantized signal.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

R [bits/sample]

S
N

R
 [

d
B

]

Huffman

entropy

27/69

Transform coding

1. Split the signal into blocks of size N (or N × N if the signal is
twodimensional). Transform the blocks using a suitable, reversible
transform to a new sequence.

2. Quantize the transform components.

3. Use some kind of source coding on the quantized transform
components (fixed length coding, Huffman, arithmetic coding et c.)

28/69

Matrix description

The transform and the inverse transform can be written in matrix form as

θ̄ = A · x̄ ; x̄ = B · θ̄

where

x̄ =

x0

x1

...
xN−1

 ; θ̄ =

θ0

θ1

...
θN−1

and the matrix element at position (i , j) is given by

[A]i,j = ai,j ; [B]i,j = bi,j

The matrices A and B are the inverses of each other, ie B = A−1.

29/69

Orthonormal transforms

We are usually only interested in orthonormal transforms, ie transforms
where B = A−1 = AT .

Orthonormal transforms are energy preserving, ie the sum of the squares
of the transformed signal is equal to the sum of the squares of the
original signal

N−1∑
i=0

θ2
i = θ̄T θ̄

= (Ax̄)TAx̄

= x̄TATAx̄

= x̄T x̄ =
N−1∑
i=0

x2
i

Parseval’s identity

30/69

The transform as a basis change

The transform can be seen as describing the signal in another basis, ie as
a linear combination of new basis vectors

x̄ = AT θ̄

=

 a00 · · · aN−1,0

...
. . .

...
a0,N−1 · · · aN−1,N−1

 θ0

...
θN−1

= θ0

 a00

...
a0,N−1

+ . . .+ θN−1

 aN−1,0

...
aN−1,N−1

The rows of the transform matrix (or the columns in the inverse
transform matrix) are the basis vectors of the new basis.

31/69

Properties

Some desirable properties of the transform

I The transform should concentrate the signal energy to as few
components as possible.

I The transform should decorrelate the transform components, ie if
possible we want E{θi · θj} = 0, i 6= j . This means that we remove
all dependance (memory) between the transform components.

I The transform should be robust with respect to changes in source
statistics.

I The transform should be simple and fast to calculate.

All of these properties can not be found in one transform.

32/69

The Karhunen-Loève-transform (KLT)

The KLT is a transform that will completely decorrelate the transform
components and also give maximal energy concentration.

Assuming we have an input signal that is modelled as a stationary
random process Xn with mean zero and auto correlation function
RXX (k) = E{XnXn+k}. Given a block size of N, we have signal vectors

x̄ =

Xn

Xn+1

...
Xn+N−1

The correlation matrix RX is the matrix

RX = E{x̄x̄T}

33/69

KLT, cont.

The correlation matrix can be expressed using the auto correlation
function

RX =

RXX (0) RXX (1) · · · RXX (N − 1)
RXX (1) RXX (0) · · · RXX (N − 2)

...
...

. . . · · ·
RXX (N − 1) RXX (N − 2) · · · RXX (0)

The correlation matrix Rθ of the transformed signal, given a transform A,
is given by

Rθ = E{θ̄θ̄T} = E{Ax̄(Ax̄)T} = ARXAT

If we want the transform to decorrelate the signal, ie diagonalize Rθ (all
values zero except for the main diagonal), we should choose the basis
vectors (rows of A) as the normalized eigenvectors of RX .

34/69

KLT, cont.

For a KLT, the variances of the transform components will be equal to
the eigenvalues of the signal correlation matrix.

In addition to decorrelating the source, the KLT will also be the transform
that gives the maximum energy concentration to a few transform
components. This is the same as saying that the KLT is the transform
that minimizes the geometric mean of the transform component variances

(
N−1∏
i=0

σ2
i)1/N

A disadvantage of the KLT is that it is signal dependent, so it has to be
transmitted as side information. There is usually also no fast way to
perform the transform.

35/69

The discrete cosine transform (DCT)

The transform matrix C is given by

[C]ij =

√

1
N ; i = 0

√
2
N cos (2j+1)iπ

2N ; i = 1, . . . ,N − 1

The DCT is a close relative of the discrete fourier transform (DFT).
There are fast ways of doing a DCT, in the same way that there are fast
fourier transforms (FFT).

The DCT will usually be very close to a KLT for sources where there is a
high correlation between consecutive samples, which includes most
natural audio and image sources.

The DCT is the most commonly used transform in image and video
coding. For instance it is used in the JPEG and MPEG standards.

36/69

DCT and KLT

Basis vectors for 8-point DCT and a KLT adapted to a music signal

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6
−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

0 2 4 6

−0.5

0

0.5

DCT KLT

37/69

Twodimensional signals

For a twodimensional signal (eg an image) we take blocks of size N × N
to transform.

In general we can view this block as a vector of N2 samples and use a
transform matrix of size N2 × N2.

Usually a separable transform is used. We then consider the block as a
matrix X instead of a vector. A onedimensional transform is applied first
the the rows of X and then on the columns (or the other way, the order
will not matter). The resultat is a matrix Θ of transform components

Θ = AXAT

The inverse transform is given by

X = ATΘA

38/69

Twodimensional signals

We can view the block X as a linear combination of new basis matrices
αij given by

αij = āT
i āj

where āi and āj are the i :th and j :th rows of A.

X =
N−1∑
i=0

N−1∑
j=0

[Θ]ij · αij

A separable transform can always be written as a general transform
applied to a vector of N2 elements, but the reverse is not true.

39/69

Basis matrices for a 8× 8 DCT

40/69

Block size

How should we choose the block size N?

A large N will give better concentration of the energy, but the transform
will be more complicated to calculate. It will also be harder to adapt the
coder if the source has different statistics in different parts (eg foreground
and background in an image or different parts of a music signal). Large
transforms can also give rise to more noticable quantization errors.

Typical block size for image coding is 8× 8 pixels (JPEG, MPEG, DV)

Typical block sizes for audio coding are 256-2048 samples (Dolby Digital,
MPEG AAC, Ogg Vorbis)

41/69

Distortion

For orthonormal transforms the distortion in the transform domain will be
the same as the distortion in the signal domain.

Assume that we quantize and reconstruct the transform vector to θ̂ and
inverse transform to the reconstructed vector x̂. The distortion is then

D =
1

N
||x̄− x̂||2 =

1

N
(x̄− x̂)T (x̄− x̂)

=
1

N
(AT θ̄ − AT θ̂)T (AT θ̄ − AT θ̂)

=
1

N
(θ̄ − θ̂)TAAT (θ̄ − θ̂)

=
1

N
(θ̄ − θ̂)T (θ̄ − θ̂) =

1

N
||θ̄ − θ̂||2

The same reasoning also applies for random signals, with expectation.

42/69

Zonal coding

In zonal coding (or zonal sampling) we split the transformed vector (or
block) into a number of parts (zones). All coefficients in the same zone
are coded using the same quantizer and the same source coder.

If we have K zones and zone j has Nj coefficients, we of course have
N1 + N2 + . . .+ NK = N.

Given that zone j has the rate Rj bits/sample, the average rate R for the
whole coder is

R =

∑K
j=1 Nj · Rj

N

The zone division, quantization and source coding can be fixed for all
blocks, or we can also switch when we needed. This gives us a better
possibility to adapt the coder to a varying signal, but it also means that
we get more side information to transmit.

43/69

Quantization, zonal coding

From now on, assume that we let each transform coefficient be its own
zone (ie all Nj = 1) and that we keep the coders fixed and don’t switch
coders between blocks.

Transform component k is quantized and coded to Rk bits, with a
resulting distortion Dk . Assuming fine quantization, the distortion can be
approximated by

Dk ≈ ck · σ2
k · 2−2Rk

We want to find the bit allocation that minimizes the average distortion

D =
1

N

N−1∑
k=0

Dk ≈
1

N

N−1∑
k=0

ck · σ2
k · 2−2Rk

under the condition that the average rate is fixed

R =
1

N

N−1∑
i=0

Rk

44/69

Bit allocation, zonal coding

For simplicity we assume that all transform components have the same
type of distribution and that we use the same type of quantization and
source coding. Then all ck are equal. Lagrange optimization gives (see
Sayood for details)

Rk = R +
1

2
log2

σ2
k

(
∏N−1

i=0 σ2
i)1/N

Note that this can give some components a negative rate. In that case
we set the rate for those components to 0, and redo the bit allocation for
the other components, such that the average rate is still R.

For some types of quantization and coding (Lloyd-Max quantization,
quantization followed by fixed length coding) we might have the
condition that rates should be integers.

45/69

Distortion, zonal coding

For optimal bit allocation the distortion for each component (given that
our fine quantization assumption still holds) is

Dk ≈ c · σ2
k · 2−2Rk =

= c · σ2
k · 2

−2R−log2

σ2
k

(
∏N−1

i=0
σ2
i

)1/N
=

= c · σ2
k ·

(
∏N−1

i=0 σ2
i)1/N

σ2
k

· 2−2R =

= c · (
N−1∏
i=0

σ2
i)1/N · 2−2R

We will thus get the same distortion for each transform component. The
average distortion will of course also take this value.

46/69

Threshold coding

For each transform block we tell which transform components that have
a magnitude over a threshold value. Only these components are
quantized and coded, the rest are set to zero. Which components that
are above the threshold needs to be transmitted as side information for
every block.

Often runlength coding of the zeros are used for this side information.

For twodimensional transforms a zigzag scanning of the components are
usually performed, to get a onedimensional signal, before the runlength
coding.

In practice, usually no separate thresholding is done. Instead, the
components that are quantized to zero are the ones that are considered
to be below the threshold.

47/69

Zigzag scanning

Zigzag scanning for 8× 8 transform. The DC level in the upper left
corner is usually treated separately.

48/69

JPEG

ISO standard (1990) for still image coding.

Uses DCT of size 8× 8 pixels.

1-4 colour components.

Either 8 or 12 bits per colour components. The common file formats
JFIF and EXIF only allow 8 bits per component.

No explicit thresholding, uniform quantization. The step size can be
choosen freely for each of the 64 transform components. Typically the
high frequency components are quantized harder than the low frequency
components.

The source coding is either runlength coding of zeros followed by
Huffman coding, or arithmetic coding. Since the arithmetic coder in the
standard was protected by several patents, only Huffman coding is used
in practice.

49/69

JPEG

Image quality is controlled by the choice of the step sizes of the 64
quantizers. Since we can choose them freely and independently of each
other, it might be hard to find the best choice of step sizes for a given
average rate or a given average distortion.

In order to simplify, most JPEG coders (eg digital cameras) only let the
user choose one quality parameter. Each quality parameter will
correspond to a pre-chosen matrix of step sizes. A quantization matrix
might look like this

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

50/69

JPEG, coding of the DC level

The difference d from the DC level in the previous block is coded. The
Huffman coding is not done directly on the difference values. Instead a
category is formed according to

k = dlog(|d |+ 1)e

Stastics are gathered for all categories and a Huffman code is
constructed.
The codeword for a difference d consists of the Huffman codeword for k
followed by k extra bits to exactly specify d .

k d extra bits
0 0 −
1 −1, 1 0, 1
2 −3,−2, 2, 3 00, 01, 10, 11
3 −7, . . . ,−4, 4, . . . , 7 000, . . . , 011, 100, . . . , 111
...

...
...

51/69

JPEG, coding of other components

The components are ordered in zigzag order. All runs of zeros are
replaced by the length of the run (min 0, max 15). Just as for the DC
component, we form the category for each non-zero component l as

k = dlog(|l |+ 1)e

A new symbol alphabet is constructed, consisting of pairs (runlength,
category). We gather statistics for the pairs and build a Huffman code
for the new alphabet. Just as for the DC level, the codeword for each
pair is followed by k bits that exactly tells us what value the non-zero
component has.

52/69

JPEG

In the Huffman code we also have two special symbols, (End Of Block)
which is used when all the remaining components in a block are zero and
ZRL (Zero Run Length) which is used when we have to code a run of
zeros that is longer than 15. ZRL means 16 zeros. For example, a run of
19 zeros followed by category 5 is described as (ZRL)(3,5).

53/69

Example image

768× 512 pixels, 8 bits/pixel

54/69

JPEG, example

One block from the image

Pixel values:

6 13 26 54 45 −33 −56 12
21 23 46 60 24 −53 −38 22
32 47 62 39 −15 −69 −20 33
48 52 37 −1 −54 −57 12 20
51 30 −7 −49 −61 −6 17 31

9 −22 −52 −68 −18 14 29 65
−42 −58 −77 −32 12 31 71 59
−72 −63 −25 9 35 86 74 25

128 has been removed from all pixel values, so black is -128 and white is
127.

55/69

JPEG, example

After DCT (rounded to integers for clarity)

42 −36 68 −50 33 0 −8 6
37 213 −35 −116 65 −20 −3 6
12 −95 −143 25 36 −11 1 −2
−37 −25 43 50 20 −31 12 −3

8 24 −14 12 −33 11 8 −11
−12 −12 9 −7 9 2 −21 5

4 3 −5 −5 −2 −14 15 3
0 0 4 1 −1 0 0 −5

56/69

JPEG, example

After quantization with step size 30 for all components (divide with the
step size and round to integer)

1 −1 2 −2 1 0 0 0
1 7 −1 −4 2 −1 0 0
0 −3 −5 1 1 0 0 0
−1 −1 1 2 1 −1 0 0

0 1 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Order in zigzag order (DC component removed)

-1 1 0 7 2 -2 -1 -3 -1 0 -1 -5 -4 1 0 2 1 1 1 0 0 0 0 2 1 -1 0 0 0 0 1 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

57/69

JPEG, example

Gather statistics for the DC categories and construct a Huffman code.
For the example test image we get the codeword lengths:

category codeword length
0 2
1 2
2 2
3 3
4 4
5 5
6 5

The DC level in our quantized block is 1, which is category 1. Thus we
will use 2+1 bits to code it.

58/69

JPEG, example

-1 1 0 7 2 -2 -1 -3 -1 0 -1 -5 -4 1 0 2 1 1 1 0 0 0 0 2 1 -1 0 0 0 0 1 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

Code as pairs (runlength, non-zero component)

(0,-1) (0,1) (1,7) (0,2) (0,-2) (0,-1) (0,-3) (0,-1) (1,-1) (0,-5) (0,-4)
(0,1) (1,2) (0,1) (0,1) (0,1) (4,2) (0,1) (0,-1) (4,1) (7,-1) (0,-1) (14,-1)
(EOB)

Code the non-zero components as category plus extra bits

(0,1) 0 (0,1) 1 (1,3) 111 (0,2) 10 (0,2) 01 (0,1) 0 (0,2) 00 (0,1) 0 (1,1)
0 (0,3) 010 (0,3) 011 (0,1) 1 (1,2) 10 (0,1) 1 (0,1) 1 (0,1) 1 (4,2) 10
(0,1) 1 (0,1) 1 (4,1) 1 (7,1) 1 (0, 1) 0 (14,1) 0 (EOB)

Do the same for all blocks in the image, gather statistics for the pairs
(runlength, category) and construct a Huffman code for them.

59/69

JPEG, example

Lengths of Huffman codewords (rows categories 1-7, columns runlengths
0-15):

2 5 6 7 6 6 5 4 7 8 10 11 11 10 9 8
4 7 8 9 8 8 6 7 12 - - - - 14 14 14
6 10 10 9 10 9 8 9 - - - - - - - -
5 12 12 12 12 12 10 12 - - - - - - - -
4 - - - - 15 15 - - - - - - - - -
4 - - - - - - - - - - - - - - -

10 - - - - - - - - - - - - - - -

EOB is coded with 2 bits, ZRL with 8 bits.

For our block we will need in total 3 bits for the DC level and 125 bits for
the AC components.

60/69

JPEG, example

The decoder recreates the following transform block (multiply decoded
components with the step sizes)

30 −30 60 −60 30 0 0 0
30 210 −30 −120 60 −30 0 0

0 −90 −150 30 30 0 0 0
−30 −30 30 60 30 −30 0 0

0 30 0 0 −30 0 0 0
0 0 0 0 0 0 −30 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

61/69

JPEG, example

The block is then inverse transformed to the following block

−1 17 22 54 44 −41 −59 0
12 14 51 55 13 −45 −52 26
28 47 63 41 −28 −65 −22 32
46 67 44 −6 −59 −59 2 27
47 26 −4 −53 −55 −16 9 43
10 −29 −61 −54 −14 18 36 59
−43 −57 −66 −21 19 43 67 45
−73 −71 −22 4 22 73 71 20

which looks like

62/69

Decoded image

0.35 bits/pixel

63/69

JPEG coding
PSNR as a function of the rate by JPEG-coding of the grayscale test
image.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
28

30

32

34

36

38

40

42

44

Datatakt [bitar/pixel]

P
S

N
R

 [
d

B
]

64/69

Original colour image

24 bits/pixel

65/69

JPEG

0.96 bits/pixel (compression ratio 25)

66/69

JPEG

0.48 bits/pixel (compression ratio 50)

67/69

JPEG

0.24 bits/pixel (compression ratio 100)

68/69

JPEG

0.12 bits/pixel (compression ratio 200)

69/69

JPEG

0.06 bits/pixel (compression ratio 400)

