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Course contents

Source modeling:
Random variables and random processes as source models.

Source coding theory:
Definition of a code. Code classes.

Information theory:
Definitions of information and entropy. The entropy gives a theoretical
limit on how much a signal from a random source can be compressed
without getting any distortion.

Practical compression methods:
Huffman coding, Tunstall coding, arithmetic coding, Golomb codes,
Lempel-Ziv-coding, Burrows-Wheeler-coding.
pack, compress, zip, gzip, bzip, GIF, PNG, fax coding, lossless JPEG,
JPEG-LS, etc.

Rate-distortion theory:
Theoretical limits for lossy coding.
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Lectures, preliminary program

1. Introduction. Sources. Random source models. Source coding.

2. Source coding. Information theory

3. Information theory. Optimal codes. Huffman coding.

4. Adaptive Huffman coding. Run length coding. Golomb codes.

5. Arithmetic coding.

6. Adaptive arithmetic coding. ppm. Binary arithmetic coding.

7. Lempel-Ziv-coding.

8. Burrows-Wheelers block transform. Tunstall coding.

9. Differential entropy. Rate-distortion theory.

10. Lossy transform coding.
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Examination

I Small project lab (2hp).
Implementation of some of the methods that are introduced in the
course. Testing on real data (text, images, executable files, etc.).
Entropy estimation. Work in groups of 1-3 students. Examination by
written report.

I Written exam (4hp).
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Sources

A source is something that produces a sequence of symbols.

The symbols are elements of a discrete alphabet A = {a1, a2, . . . , aL} of
size L.

Most of the time we will have finite alphabets, but infinite alphabets are
also allowed.

In many cases we only have access to a symbol sequence and need to
model the source from the sequence.

The source models we will concentrate on are random (stochastic)
models, where we assume that the symbols are produced from random
variables or random processes.
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Random variables

The sample space Ω is the set of possible outcomes of a random
experiment, Ω = {ω1, ω2, . . . , ωn}

Every subset of Ω is called an event. We have a measure P (probability)
on the events

A random variable X is a mapping from the sample space to the alphabet
A

X : Ω→ A

We write {X = x} for the event {ω : X (ω) = x}, but P(X = x) instead
of P({X = x}).
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Random variables, cont.

The probability function pX

pX (x) = P(X = x), x ∈ A

We have pX (x) ≥ 0 for all x and∑
x∈A

pX (x) = 1

For a real function f (X ) of a random variable X , the average value
(expected value) is the real number

E{f (X )} 4=
∑
x∈A

f (x) · pX (x)
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Random variables, cont.

We can also have X = (Y ,Z ) where Y and Z are random variables with
alphabets AY = {y1, . . . , yM} and AZ = {z1, . . . , zN}. X takes values in
AX = {(y1, z1), (y1, z2), . . . , (yM , zN)}.

Normally we write pYZ (y , z) instead of pX ((y , z)).

We can of course generalize this to X = (X1,X2, . . . ,XK ).

The random variables Y and Z are called independent if

pYZ (y , z) = pY (y) · pZ (z), ∀y , z

The conditional probability function pX |Y is defined as

pX |Y (x |y)
4
=

pXY (x , y)

pY (y)

when pY (y) > 0.
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Random sources

A source is modeled as a random process Xn (can also be seen as a
sequence of random variables)

. . . ,X−1,X0,X1,X2, . . .

or
X0,X1,X2, . . .

Most of the time we are only interested in stationary sources, ie when all
probability functions are independent of n. For example:

pXnXn+1 = pXn+kXn+k+1

If Xn and Xm are independent for all n 6= m the source is called
memoryless, otherwise we say that the source has memory.
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Markov chains

A Markov chain is a memory source with limited memory one step back
in the sequence.

p(xn|xn−1xn−2 . . .) = p(xn|xn−1)

If the alphabet is A = {a1, a2, . . . , aL}, the Markov chain can be
described as a state model with L states (ai ) where we at time n move
from state (xn−1) to state (xn) with probability p(xn|xn−1). These
conditional probabilities are referred to as transition probabilities
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Markov chains, cont.

The Markov chain can be described using its starting state and its
transition matrix P. This quadratic matrix has in row r and column c the
transition probability from state ar to ac .

If it is possible to move, with positive probability, from every state to
every other state in a finite number of steps, the Markov chain is called
irreducible.

If we at time n are in state si with the probability pni , we can calculate
the probabilities for time n + 1 as

[pn+1
1 pn+1

2 . . . pn+1
L ] = [pn1 pn2 . . . pnL] · P

A distribution over the states such that the distribution at time n + 1 is
the same as at time n is called a stationary distribution.

If the Markov chain is irreducible and aperiodic the stationary distribution
is unique and every starting distribution will approach the stationary
distribution as the time goes to infinity.



12/23

Stationary distribution

We denote the stationary probabilities wi and define the row vector

w̄ = (w1,w2, . . . ,wL)

If the stationary distribution exists, it can be found as the solution of the
equation system

w̄ = w̄ · P

or
w̄ · (P− I) = 0̄

This equation system is under-determined (if w̄ is a solution then c · w̄ is
also a solution, for any constant c). To find the correct solution we add

the equation
∑L

j=1 wj = 1 (wj are probabilities, therefore their sum is 1).

(If you prefer equation systems with column vectors, you can just
transpose the entire expression and solve w̄T = PT · w̄T instead.)
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Markov sources of higher order

A Markov source of order k is a memory source with limited memory k
steps back in the sequence.

p(xn|xn−1xn−2 . . .) = p(xn|xn−1 . . . xn−k)

If the alphabet is A = {a1, a2, . . . , aL}, the Markov source can be
described as a state model with Lk states (xn−1 . . . xn−k) where we at
time n move from state (xn−1 . . . xn−k) to state (xn . . . xn−k+1) with
probability p(xn|xn−1 . . . xn−k). These probabilities are called transition
probabilities

The sequence of states is a random process Sn = (Xn . . .Xn−k+1) with
alphabet B = Ak = {b1, b2, . . . , bLk} of size Lk .

The state process Sn is a Markov chain and thus we can use the same
methods for finding stationary distributions as previously.
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Markov sources, cont.

The Markov source can be described using its starting state and its
transition matrix P. This quadratic matrix has in row r and column k the
transition probability from state br to bc .

If we at time n are in state si with the probability pni , we can calculate
the probabilities for time n + 1 as

[pn+1
1 pn+1

2 . . . pn+1
Lk ] = [pn1 pn2 . . . pnLk ] · P

We denote the stationary probabilities wi and define the row vector

w̄ = (w1,w2, . . . ,wLk )

If the stationary distribution exists, it can be found as the solution of the
equation system

w̄ = w̄ · P
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Random modeling

Given a long symbol sequence from a source, how do we make a random
model for it?

Relative frequencies: To get the probability for a symbol, count the
number of times that symbol appears and divide by the total number of
symbols in the sequence. In the same way this can be done for pair
probabilities, triple probabilities, conditional probabilities et c.

These methods give two-pass algorithms, where you first have to go
through the sequence once to estimate the probabilities and then once
more when doing the actual coding of the sequence. Later in the course
we will introduce adaptive methods, where you don’t have to pass
through the sequence twice.



16/23

Random model from given sequence

Example: Alphabet {a, b}. Given data:
bbbbaabbbaaaaabbbbbabaaabbbb.

To estimate the symbol probabilities we count how often each symbol
appears: a appears 11 times, b 17 times. The estimated probabilities
p(xt) are then:

p(a) =
11

28
, p(b) =

17

28

For pair probabilities and conditional probabilities we instead count how
often the different symbol pairs appear. aa appears 7 times, ab 4 times,
ba 4 times and bb 12 times. The estimated probabilities p(xt , xt+1) and
p(xt+1|xt) are:

p(aa) =
7

27
, p(ab) =

4

27
, p(ba) =

4

27
, p(bb) =

12

27

p(a|a) =
7

11
, p(b|a) =

4

11
, p(a|b) =

4

16
, p(b|b) =

12

16
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The CIA World Factbook as a Markov source

Probabilities estimated from the CIA World Factbook. Random example
sequences created using different order Markov models.

Markov, order 1: llanustorambmartsy alaroffed strengsaronsll [US, ll
iangiovabl fons, Agel w pe 1 fentatienges Natar:
beminorte ciathsst, flans; (199 Gel DFis aiongochesher
prieran, puishirane (Vind d il

Markov, order 2: lgistrabon; getempolly espulats ar erachant LORICJ
jurest, cesways: Dipmetobsided Sheld birposlas to of totee
tal an pres of Reparatic raguandith-Davalithe HIMOG, 6
mal aliter 1 sulu Viet

Markov, order 3: sies: per stages: government, JAMEMBASOGLU;
Supremier, Syrial year belopedisput 2 capital reace
unisterman kWh problack foodland sected and othe
Tradequipmeni 6%, and Inditure: ’ Idrier, 3

Markov, order 4: l 145 military devich, presentative - 2 Atlantime
Ministrate 3.17address Orthodox 1993); broads:
populative accountries and New York, Houstomatic
Liberative you Inlandlocked by on
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Source coding

Source coding means mapping sequences of symbols from a source
alphabet onto binary sequences (called code words).

The set of all code words is called a code.

We can of course have non-binary codes too, but in practice only binary
codes are used.
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Source coding, cont.

Depending on whether we map a fixed or a varying number of symbols
onto each code word and depending on if all code words in the code have
the same number of bits or a varying number of bits, we can divide all
codes into four groups:

Fixed number of symbols, fixed number of bits Examples: ASCII, ISO
8859-1

Fixed number of symbols, varying number of bits Examples: Huffman
coding, arithmetic coding, UTF-8

Varying number of symbols, fixed number of bits Examples: Tunstall
coding, Lempel-Ziv

Varying number of symbols, varying number of bits Examples:
Lempel-Ziv
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Some examples

Assume that A = {a, b, c}

fix→fix fix→variable
a 00 0
b 10 10
c 01 110

variable→fix variable→variable
aa 000 0
aba 001 100
abb 010 101
abc 011 1100
ac 100 1101
b 101 1110
c 110 11110
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Properties of codes

If you from a sequence of code words can recreate the original symbol
sequence, the code is called uniquely decodable.

If you can recognize the code words directly while decoding, the code is
called instantaneous.

If no code word is a prefix to another code word, the code is called a
prefix code (in some literature they are called prefix free codes). These
codes are tree codes, ie each code word can be described as the path
from the root to a leaf in a binary tree.

All prefix codes are instantaneous and all instantaneous codes are prefix
codes.
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Example

Example, A = {a, b, c , d}

Symbol Code 1 Code 2 Code 3 Code 4 Code 5
a 00 0 0 0 0
b 01 0 1 10 01
c 10 1 00 110 011
d 11 10 11 111 111

Code 1 Uniquely decodable, instantaneous (tree code)

Code 2 Not uniquely decodable

Code 3 Not uniquely decodable

Code 4 Uniquely decodable, instantaneous (tree code)

Code 5 Uniquely decodable, not instantaneous
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Uniquely decodable or not?

A simple algorithm to check if a given code is uniquely decodable or not:

Start with a list of all code words. Examine every pair of elements in the
list to see if any element is a prefix to another element. In that case add
the suffix to the list, if it’s not already in the list. Repeat until one of two
things happen:

1. You find a suffix that is a code word.

2. You find no more new suffixes to add to the list.

In case 1 the code is not uniquely decodable, in case 2 the code is
uniquely decodable.


