Arithmetic coding, lecture example

Coding

Alphabet $\mathcal{A}=\{1,2,3\}$. Cumulative distribution function

$$
F(0)=0, F(1)=0.6, F(2)=0.9, F(3)=1
$$

Code the sequence $1,3,2,1$. Number of symbols to code $n=4$.

$$
\begin{aligned}
l^{(0)} & =0 \\
u^{(0)} & =1 \\
l^{(1)} & =0+(1-0) \cdot 0=0 \\
u^{(1)} & =0+(1-0) \cdot 0.6=0.6 \\
l^{(2)} & =0+(0.6-0) \cdot 0.9=0.54 \\
u^{(2)} & =0+(0.6-0) \cdot 1=0.6 \\
l^{(3)} & =0.54+(0.6-0.54) \cdot 0.6=0.576 \\
u^{(3)} & =0.54+(0.6-0.54) \cdot 0.9=0.594 \\
l^{(4)} & =0.576+(0.594-0.576) \cdot 0=0.576 \\
u^{(4)} & =0.576+(0.594-0.576) \cdot 0.6=0.5868
\end{aligned}
$$

The sequence corresponds to the interval $[0.576$ 0.5868). The interval size is 0.0108 and thus we will need at least $\left\lceil-\log _{2} 0.0108\right\rceil=7$ bits in our codeword, maybe one more. Write the two interval limits as binary numbers:

$$
\begin{aligned}
0.576 & =0.10010011011 \ldots \\
0.5868 & =0.10010110001 \ldots
\end{aligned}
$$

The smallest seven bit number inside the interval is 0.1001010 , and all numbers starting with these bits are also inside the interval (ie smaller than the upper interval limit). Thus, seven bits are enough. The codeword is $\mathbf{1 0 0 1 0 1 0}$.

Decoding

The decoder has to know the number of symbols coded ($n=4$) and the cumulative distribution function:

$$
F(0)=0, F(1)=0.6, F(2)=0.9, F(3)=1
$$

Decode the first codeword in the bitstream starting 1001010001011...
Read one bit at a time. The bits read sofar $b_{1} b_{2} \ldots b_{k}$ specify an interval $\left[0 . b_{1} b_{2} \ldots b_{k} \quad 0 . b_{1} b_{2} \ldots b_{k}+1 / 2^{k}\right.$) As soon as this interval is wholly inside the subinterval for a particular symbol sequence, we can decode one symbol. For the first symbol, the intervals corresponding to symbols 1,2 and 3 are $\left[\begin{array}{ll}0 & 0.6\end{array}\right)$, $\left[\begin{array}{ll}0.6 & 0.9\end{array}\right)$ and $\left[\begin{array}{ll}0.9 & 1\end{array}\right)$ respectively.

bits	binary interval	decimal interval
1	$\left[\begin{array}{lll}0.1 & 1) & {[0.5} \\ 1\end{array}\right)$	
10	$\left[\begin{array}{lll}0.10 & 0.11) & {[0.5} \\ 0.75) \\ 100 & {[0.100} & 0.101) \\ 1001 & {[0.10010 .1010)} & {[0.50 .625)} \\ 10010 & {[0.10010} & 0.10011)\end{array}\left[\begin{array}{lll}0.5625 & 0.625) \\ & 0.59375)\end{array}\right.\right.$	

Since this interval is wholly inside the interval for symbol 1, we can decode the first symbol as 1 . We then split this symbol interval into three parts acording to F. This is gives us the intervals corresponding to symbols 1,2 and 3 as $\left[\begin{array}{ll}0 & 0.36\end{array}\right),\left[\begin{array}{ll}0.36 & 0.54\end{array}\right]$ and $\left[\begin{array}{ll}0.54 & 0.6)\end{array}\right]$ respectively. We again check our bit interval and see that we are wholly inside the interval for 3 . Thus we decode the second symbol as 3 . We again split the symbolinterval into three parts acording to F. This is gives us the intervals corresponding to symbols 1,2 and 3 as $[0.540 .576),\left[\begin{array}{ll}0.576 & 0.594)\end{array}\right]$ and $[0.5940 .6)$ respectively. Checking our bit interval again, we see it covers more than one symbol interval. We must thus read more bits.

bits	binary interval	decimal interval
100101	$[0.1001010 .10011)$	$[0.5781250 .59375)$

This interval is wholly inside the interval for symbol 2 , so we can decode the third symbol as 2. Split this symbol interval into three parts acording to F. This is gives us the intervals corresponding to symbols 1,2 and 3 as $[0.576 \quad 0.5868)$, [0.5868 0.5922) and $[0.59220 .594)$ respectively. Checking our bit interval again, we see it covers more than one symbol interval. We must thus read more bits.

bits	binary interval	decimal interval
1001010	$[0.10010100 .1001011)$	$[0.5781250 .5859375)$

This interval is wholly inside the interval for symbol 1 , so we can decode the fourth symbol as 1 . Since we have now decoded 4 symbols, we are finished. The following bits in the bitstream belong to the next codeword.

Our decoded symbol sequence is $1,3,2,1$ which is exactly the symbol sequence that that we coded.

