Arithmetic coding, lecture example

Coding

Alphabet $\mathcal{A}=\{1,2,3\}$. Let $m=k=6$. Cumulative distribution function

$$
F(0)=0, F(1)=38, F(2)=58, F(3)=64
$$

Code the sequence $1,3,2,1$

$$
\begin{aligned}
l^{(0)} & =0=(000000)_{2} \\
u^{(0)} & =63=(111111)_{2} \\
l^{(1)} & =0+\left\lfloor\frac{(63-0+1) \cdot 0}{64}\right\rfloor=0=(000000)_{2} \\
u^{(1)} & =0+\left\lfloor\frac{(63-0+1) \cdot 38}{64}\right\rfloor-1=37=(100101)_{2} \\
l^{(2)} & =0+\left\lfloor\frac{(37-0+1) \cdot 58}{64}\right\rfloor=34=(100010)_{2} \\
u^{(2)} & =0+\left\lfloor\frac{(37-0+1) \cdot 64}{64}\right\rfloor-1=37=(100101)_{2}
\end{aligned}
$$

The first bit is the same in l and u. Shift out 1 to the codeword, shift a 0 into l and a 1 into u. The codeword so far is 1 .

$$
\begin{aligned}
l^{(2)} & =(000100)_{2}=4 \\
u^{(2)} & =(001011)_{2}=11
\end{aligned}
$$

The first bit is the same in l and u. Shift out 0 to the codeword, shift a 0 into l and a 1 into u. The codeword so far is 10 .

$$
\begin{aligned}
l^{(2)} & =(001000)_{2}=8 \\
u^{(2)} & =(010111)_{2}=23
\end{aligned}
$$

The first bit is the same in l and u. Shift out 0 to the codeword, shift a 0 into l and a 1 into u. The codeword so far is 100 .

$$
\begin{aligned}
l^{(2)} & =(010000)_{2}=16 \\
u^{(2)} & =(101111)_{2}=47
\end{aligned}
$$

Case 3. Shift both l and u, but don't put any bits in the codeword yet. Shift a 0 into l and a 1 into u, and invert the new most significant bit in both l and u.

$$
\begin{aligned}
l^{(2)} & =(000000)_{2}=0 \\
u^{(2)} & =(111111)_{2}=63 \\
l^{(3)} & =0+\left\lfloor\frac{(63-0+1) \cdot 38}{64}\right\rfloor=38=(100110)_{2} \\
u^{(3)} & =0+\left\lfloor\frac{(63-12+1) \cdot 58}{64}\right\rfloor-1=57=(111001)_{2}
\end{aligned}
$$

The first bit is the same in l and u. Shift out 1 plus an extra 0 from the previous case 3 shift to the codeword, shift a 0 into l and a 1 into u. The codeword so far is 10010 .

$$
\begin{aligned}
l^{(3)} & =(001100)_{2}=12 \\
u^{(3)} & =(110011)_{2}=51 \\
l^{(4)} & =12+\left\lfloor\frac{(51-12+1) \cdot 0}{64}\right\rfloor=12=(001100)_{2} \\
u^{(4)} & =12+\left\lfloor\frac{(51-12+1) \cdot 38}{64}\right\rfloor-1=34=(100010)_{2}
\end{aligned}
$$

Since there are no more symbols we don't need to do any more shift operations. The codeword is the bits that have been shifted out before, plus all of $l^{(4)}$, ie 10010001100.

Decoding

The decoder has to know the precision ($m=k=6$), the number of symbols coded ($n=4$) and the cumulative distribution function:

$$
F(0)=0, F(1)=38, F(2)=58, F(3)=64
$$

Decode the first codeword in the bitstream starting 100100011001010 ...
For the given F, the interval $0-37$ belongs to symbol 1, the interval $38-57$ to symbol 2 and the interval $58-63$ to symbol 3 . Start the tag t as the first six bits from the bitstream.

$$
\begin{gathered}
l^{(0)}=(000000)_{2}=0 \\
u^{(0)}=(111111)_{2}=63 \\
t=(100100)_{2}=36 \\
\left\lfloor\frac{(36-0+1) \cdot 64-1}{63-0+1}\right\rfloor=36 \Rightarrow \text { the first symbol is } 1 \\
l^{(1)}=0+\left\lfloor\frac{(63-0+1) \cdot 0}{64}\right\rfloor=0=(000000)_{2} \\
u^{(1)}=0+\left\lfloor\frac{(63-0+1) \cdot 38}{64}\right\rfloor-1=37=(100101)_{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left\lfloor\frac{(36-0+1) \cdot 64-1}{37-0+1}\right\rfloor=62 \Rightarrow \text { the second symbol is } 3 \\
& l^{(2)} \quad=0+\left\lfloor\frac{(37-0+1) \cdot 58}{64}\right\rfloor=34=(100010)_{2} \\
& u^{(2)} \quad=0+\left\lfloor\frac{(37-0+1) \cdot 64}{64}\right\rfloor-1=37=(100101)_{2}
\end{aligned}
$$

The first three bits are the same in l and u. Shift them out, shift zeros into l, ones into u and three new bits from the bitstream into t.

$$
\begin{aligned}
l^{(2)} & =(010000)_{2}=16 \\
u^{(2)} & =(101111)_{2}=47 \\
t & =(100011)_{2}=35
\end{aligned}
$$

Case 3. Shift l, u and $t .0$ into $l, 1$ into u and a new bit from the bitstream into t. Invert the new most signficant bit in each.

$$
\begin{gathered}
l^{(2)}=(000000)_{2}=0 \\
u^{(2)}=(111111)_{2}=63 \\
t=(100110)_{2}=38 \\
\left\lfloor\frac{(38-0+1) \cdot 64-1}{63-0+1}\right\rfloor=38 \Rightarrow \text { the third symbol is } 2 \\
l^{(3)}=0+\left\lfloor\frac{(63-0+1) \cdot 38}{64}\right\rfloor=38=(100110)_{2} \\
u^{(3)}=0+\left\lfloor\frac{(63-0+1) \cdot 58}{64}\right\rfloor-1=57=(111001)_{2}
\end{gathered}
$$

The first bit is the same in l and u. Shift them out, shift 0 into $l, 1$ into u and a new bit from the bitstream into t.

$$
\begin{aligned}
l^{(3)} & =(001100)_{2}=12 \\
u^{(3)} & =(110011)_{2}=51 \\
t & =(001100)_{2}=12 \\
\left\lfloor\frac{(12-12+1) \cdot 64-1}{51-12+1}\right\rfloor & =1 \Rightarrow \text { the fourth symbol is } 1
\end{aligned}
$$

Since we have now decoded four symbols we don't have to do any more calculations. The decoded sequence is $1,3,2,1$ which is exactly what we coded. The rest of the bits in the stream belong the next codeword.

