

Written Exam in Data compression TSBK08

26th August 2023 8:00 - 12:00

Location:	TER3		
Examiner:	Harald Nautsch		
Teacher:	Harald Nautsch,		
Department:	ISY		
Module:	TEN1		
Number of problems:	7		
Number of pages:	3		
Permitted equipment:	Calculator, general English dictionaries		
Other:	Answers can be given in English or in Swedish. The teacher will only be available on phone during the exam.		
Grades:	0-13 U 14-19 3 20-25 4 26-30 5		

a) Formulate Kraft-McMillan's inequality.	
	(1 p)
b) Explain what an instantaneous code is.	
	(1 p)
c) Explain what a Golomb code is and what type of probability distribution it is good for.	
	(2 p)
d) Explain how prediction with partial match (ppm) coding works.	
	(2 p)
e) Explain what universal coding is and give an example of such a coding method.	
	(2 p)

2 Let H(X) be the entropy of the random variable X. Show that

$$0 \le H(X) \le \log L$$

where L is the size of the alphabet.

1

(4 p)

3 A second order Markov source X_i with alphabet $\mathcal{A} = \{a, b\}$ is given by the transition probabilities $p(x_i|x_{i-1}x_{i-2})$ below (note the symbol order)

$$p(a|aa) = 0.8, \quad p(b|aa) = 0.2 \\ p(a|ab) = 0.6, \quad p(b|ab) = 0.4 \\ p(a|ba) = 0.3, \quad p(b|ba) = 0.7 \\ p(a|bb) = 0.1, \quad p(b|bb) = 0.9$$

a) Calculate the entropies $H(X_i)$, $H(X_i|X_{i-1})$ and $H(X_i|X_{i-1}, X_{i-2})$ for the source.

(3 p)

b) Construct a Huffman code for triples of symbols and calculate the rate of the code (in bits/symbol).

(3 p)

4 A memoryless source has the alphabet $\mathcal{A} = \{x, y, z\}$ with symbol probabilities p(x) = 0.6, p(y) = 0.3 and p(z) = 0.1. Show how arithmetic coding works by coding the sequence

yxxzxx

Give both the corresponding interval and the codeword. You can assume that all calculations are exact.

(4 p)

5 A source has the alphabet $\{a, b, c, d, e, f, g, h\}$. A sequence from the source is coded using LZW and gives the following index sequence:

 $1, 0, 8, 10, 0, 7, 4, 13, 15, 0, 6, 3, 17, 19, \ldots$

The starting dictionary is:

index	sequence	index	sequence
0	a	4	e
1	b	5	f
2	c	6	g
3	d	7	h

Decode the index sequence. Also give the resulting dictionary.

(3 p)

6 A source has the alphabet $\mathcal{A} = \{a, b, c, d\}$. Code the sequence

cabcabbcad

using BWT (Burrows-Wheeler's transform) followed by mtf (moveto-front coding). The block size should be 10.

(3 p)

7 Calculate the differential entropy of the distribution with probability density function f(x)

$$f(x) = \begin{cases} 2 - 2x & ; 0 \le x \le 1\\ 0 & ; \text{ otherwise} \end{cases}$$
(2 p)