

Written Exam in Data compression TSBK08

8th June 2023 8:00 - 12:00

Location:	U3
Examiner:	Harald Nautsch
Teacher:	Harald Nautsch, 1361
Department:	ISY
Module:	TEN1
Number of problems:	7
Number of pages:	4
Permitted equipment:	Calculator, general English dictionaries
Other:	Answers can be given in English or in Swedish. The teacher will visit at around 9:15 and 10:45
Grades:	0-13 U 14-19 3 20-25 4 26-30 5

1 a) What are the properties of a source that makes it possible to compress its output?

(2 p)

- b) Describe the following classes of source codes and how they relate to each other.
 - Uniquely decodable codes.
 - Instantaneous codes.

(2 p)

c) Explain what a Golomb code is and what type of probability distribution it is good for.

(2 p)

d) Explain how prediction with partial match (ppm) coding works.

(2 p)

2 Assume that we have a stationary source X_i and that we code n symbols at a time using an optimal code. Show that the mean data rate R of the code approaches the entropy rate of the source when n grows to infinity.

(4 p)

3 A second order Markov source X_i with alphabet $\mathcal{A} = \{a, b\}$ is given by the transition probabilities $p(x_i|x_{i-1}x_{i-2})$ (note the symbol order) below

$$p(a|aa) = 0.9, \quad p(b|aa) = 0.1 \\ p(a|ab) = 0.8, \quad p(b|ab) = 0.2 \\ p(a|ba) = 0.4, \quad p(b|ba) = 0.6 \\ p(a|bb) = 0.1, \quad p(b|bb) = 0.9$$

a) Calculate the entropies $H(X_i)$, $H(X_i, X_{i+1})$ and $H(X_i|X_{i-1}, X_{i-2})$ for the source.

(3 p)

b) Construct a Huffman code for triples of symbols and calculate the rate of the code (in bits/symbol).

(3 p)

4 A memoryless source has the alphabet $\mathcal{A} = \{a, b, c\}$ with symbol probabilities p(a) = 0.7, p(b) = 0.2 and p(c) = 0.1. Show how arithmetic coding works by coding the sequence

caaaba

Give both the corresponding interval and the codeword. You can assume that all calculations are exact.

(4 p)

5 A source has the alphabet $\mathcal{A} = \{n, o, p, q, r, s, t, u\}$. We want to code the source using LZSS.

> a) Assume that we want to use a search buffer size of 32 and that we want use 3 bit fixed length codewords to code the match lengths. What is the shortest match length that should be coded as a match instead of a sequence of single symbols?

> > (1 p)

b) Code the sequence beginning with

 $turturtus usup or tus usus ppp portn \ldots$

Give the resulting binary codewords.

(3 p)

6 A source has the alphabet $\mathcal{A} = \{s, t, u, v\}$. Code the sequence

susstuss

using BWT (Burrows-Wheeler's transform) followed by mtf (moveto-front coding). The block size should be 8.

(3 p)

7 Calculate the differential entropy of the continuous random variable X with probability density function f(x)

$$f(x) = \begin{cases} 0.4 & ; |x| \le 1\\ 0.1 & ; 1 < |x| \le 2\\ 0 & ; \text{ otherwise} \end{cases}$$
(1 p)