Written Exam inData compressionTSBK08
20th March 2023 14:00-18:00
Location: U7,TER2
Examiner: Harald Nautsch
Teacher: Harald Nautsch, 1361
Department: ISY
Module: TEN1
Number of problems: 8
Number of pages: 4
Permitted equipment: Calculator, general English dictionaries
Other:Answers can be given in English orin Swedish. The teacher will visit ataround 15:15 and 16:45
0-13 U14-19 320-25 4
26-30 5
a) Explain how adaptive arithmetic coding works.
b) Explain what universal coding is and give an example of such a coding method.
c) Explain what the rate-distortion function is and how it is calculated for a stationary memoryless random source.

2 Describe how the coding works in the following lossless image coding standards.
a) JPEG-LS
b) PNG
c) GIF

3 Formulate Kraft's inequality and give a proof of it.

4 A memoryless source has the alphabet $\mathcal{A}=\{a, b, c\}$. The symbol probabilities are

$$
p(a)=0.6, p(b)=0.35, p(c)=0.05
$$

What is the resulting average data rate (in bits/symbol) if we code pairs of symbols from the source using a Huffman code?

5 A fax machine works by scanning paper documents line by line. The symbol alphabet is black and white pixels, ie $\mathcal{A}=\{b, w\}$. We want to make a random model X_{i} for typical documents and calculate limits on the data rate when coding the documents.
From a large set of test documents, the following conditional probabilities $p\left(x_{i} \mid x_{i-1}, x_{i-2}\right)$ (note the order) have been estimated.

$$
\begin{array}{ll}
p(w \mid w, w)=0.9 & p(b \mid w, w)=0.1 \\
p(w \mid w, b)=0.85 & p(b \mid w, b)=0.15 \\
p(w \mid b, w)=0.3 & p(b \mid b, w)=0.7 \\
p(w \mid b, b)=0.2 & p(b \mid b, b)=0.8
\end{array}
$$

a) The given probabilities imply a Markov model of order 2. Draw the state diagram for this Markov model and calculate the stationary probabilities.
b) Calculate the entropies $H\left(X_{i}\right), \quad H\left(X_{i} \mid X_{i-1}\right)$ and $H\left(X_{i} \mid X_{i-1}, X_{i-2}\right)$ for the model.

6 Consider the source in problem 5. Use arithmetic coding to code the sequence

$$
w w w b b w
$$

The memory of the source should be utilized in the coder. The source can be assumed to be in state $w w$ when the coding starts. You can assume that the coder can store all probabilities and interval limits exactly. Give both the resulting interval and the codeword.

7 A source has the alphabet $\{a, b, c, d, e\}$. A sequence from the source is coded using LZW giving the following index sequence:

$$
1,4,3,1,0,7,6,11,8,5,13,15, \ldots
$$

The starting dictionary is;

index	sekvens
0	a
1	b
2	c
3	d
4	e

Decode the index sequence. Also give the dictionary.
$8 \quad$ A source has the alphabet $\mathcal{A}=\{a, b, c, d\}$. A symbol sequence of length 8 is coded using BWT and mtf. The resulting index is 6 and the mtf-coded sequence is $2,0,0,1,0,2,0,0$. Decode the symbol sequence.

