
Solutions to Written Exam in
Data compression

TSBK08

27th August 2022

1 a) See the course literature.

b) See the course literature.

c) See the course literature.

d) See the course literature.

e) See the course literature.

2 If X takes values in the alphabet {a1, a2, . . . , aL} the entropy is
given by

H(X) = −

L
∑

i=1

p(ai) · log p(ai)

The left inequality comes from

−p(ai) · log p(ai)

= 0, p(ai) = 0
> 0, 0 < p(xi) < 1
= 0, p(ai) = 1

Thus H(X) ≥ 0 with equality if and only if p(ai) is either 0 or 1
for every i, but then we must have that p(ai) = 1 for exactly one i.

The right inequality comes from

H(X)− logL = −
L
∑

i=1

p(ai) log p(ai)− logL

=
L
∑

i=1

p(ai) log
1

L · p(ai)

≤

L
∑

i=1

p(ai)(
1

L · p(ai)
− 1) log e

= (
L
∑

i=1

1

L
−

L
∑

i=1

p(ai)) log e

= (1− 1) log e = 0

with equality if and only if p(ai) = 1

L
for all i = 1, . . . , L. This

inequality can also be proven by regular Lagrange minimization
techniques.

3 A Huffman code for the distribution gives the mean codeword
length l̄ = 2.64 bits/codeword and average data rate R = l̄ = 2.64
bits/symbol.

For comparison, the entropy rate of the source is H(Xn) ≈ 2.5819.

4 a) The stationary distribution of the Markov source is

w̄ = [wa wb wc] = [
23

66

18

66

25

66
]

This gives us the memoryless entropy

H(Xn) = −
23

66
· log

23

66
−

18

66
· log

18

66
−

25

66
· log

25

66
≈ 1.5717

and the conditional entropy

H(Xn|Xn−1) =
23

66
· (−0.75 · log 0.75− 0.15 · log 0.15− 0.1 · log 0.1) +

18

66
· (−0.25 · log 0.25− 0.6 · log 0.6− 0.15 · log 0.15) +

25

66
· (−0.05 · log 0.05− 0.15 · log 0.15− 0.8 · log 0.8) ≈

≈ 1.0712

Finally, the chain rule gives us

H(Xn, Xn+1, Xn+2) = H(Xn) +H(Xn+1|Xn) +H(Xn+2|Xn, Xn+1)

= H(Xn) + 2 ·H(Xn+1|Xn)

≈ 3.7140

where we used the fact that the source is of order one and
stationary.

b) Under the assumption that the subintervals are always ordered
in the same order as in the alphabet, we will get the inter-
val [0.48751875 0.49359375) with size 0.006075. (Simple check:
0.75 · 0.75 · 0.15 · 0.6 · 0.15 · 0.8 = 0.006075).

We will need at least ⌈− log2 0.006075⌉ = 8 bits in our code-
word, maybe one more.

Write the two limits as binary numbers:

0.48751875 = 0.01111100110011 . . .

0.49359375 = 0.01111110010111 . . .

The smallest number with eight bits in the interval is 0.01111101.
All numbers that start with these bits are also inside the inter-
val (ie smaller than the upper limit). Eight bits will therefore
be enough.

The codeword is thus 01111101.

5 Inverse mtf gives the vector L = [o o p p p o m m].

Sort the sequence to get the vector F = [m m o o o p p p] which
gives us the vector T = [6 7 0 1 5 2 3 4] (the position in L where
you find each symbol in F).

Inverse BWT gives the sequence pompompo.

6 a) If we only use fixed length codes, we need log2 512 = 9 bits
for the offset and log2 16 = 4 bits to code a symbol. Including

the flag bit, we thus need 1+9+4=14 bits to code a match and
1+4=5 bits to code a single symbol. It is thus better to code
matches of length 1 and 2 as single symbols. Given 4 bits for
the length we can thus use the match lengths 3-18 instead of
the lengths 1-16.

If flag 0 is used to indicate a single symbol and flag 1 is used to
indicate a match, we get the codewords (< 0, c > or < 1, o, l >):

< 0, k > < 0, a > < 0, n > < 1, 2, 5 > < 0, p > < 1, 7, 5 >

< 0, b > < 1, 0, 3 > < 1, 10, 4 > . . .

The number of bits used to code the first 22 symbols of the
sequence is 5+5+5+14+5+14+5+14+14 = 81.

b) The decoded sequence is

gagagagamigamigogogoge . . .

and the dictionary looks like

index word index word index word index word
0 a 8 i 16 ga 24 mig

1 b 9 j 17 ag 25 go

2 c 10 k 18 gag 26 og

3 d 11 l 19 gaga 27 gog

4 e 12 m 20 am 28 goge

5 f 13 n 21 mi 29 e∗
6 g 14 o 22 ig

7 h 15 p 23 gam

where the last symbol of word 29 isn’t known until we have
decoded the next index.

