Written Exam inData compressionTSBK08
27th August 2022 8:00-12:00

Location:

Examiner:
Teacher:
Department:
Module:
Number of problems: 6
Number of pages: 4
Permitted equipment: Calculator, general English dictionaries

TER2
Harald Nautsch
Harald Nautsch, 0701718715
ISY
TEN1

Other:

Grades:
Grades:

Answers can be given in English or in Swedish.
The teacher is only available by phone during the exam.

0-13 U
14-19 3
20-25 4
26-30 5

1
a) Formulate Kraft-McMillan's inequality.
b) Explain what an instantaneous code is.
c) Explain how prediction with partial match (ppm) coding works.
d) Explain what a Golomb code is and what type of probability distribution it is good for.
e) Explain what the rate-distortion function is and how it is calculated for a stationary memoryless random source.

2 Let $H(X)$ be the entropy of the random variable X. Show that

$$
0 \leq H(X) \leq \log L
$$

where L is the size of the alphabet.

3 A memoryless source has the alphabet

$$
\mathcal{A}=\{a, b, c, d, e, f, g, h\}
$$

The symbol probabilities are

$$
\begin{aligned}
& p(a)=0.41, p(b)=0.12, p(c)=0.11, p(d)=0.10 \\
& p(e)=0.10, p(f)=0.06, p(g)=0.06, p(h)=0.04
\end{aligned}
$$

Construct a Huffman code for the source and calculate the resulting average data rate (in bits/symbol) of the code.

4 A stationary Markov source X_{n} of order 1 , with alphabet $\mathcal{A}=$ $\{a, b, c\}$, is given by the transition probabilities $p\left(x_{n} \mid x_{n-1}\right)$ below

$$
\begin{array}{lll}
p(a \mid a)=0.75 & p(b \mid a)=0.15 & p(c \mid a)=0.10 \\
p(a \mid b)=0.25 & p(b \mid b)=0.6 & p(c \mid b)=0.15 \\
p(a \mid c)=0.05 & p(b \mid c)=0.15 & p(c \mid c)=0.8
\end{array}
$$

a) Calculate the entropies $H\left(X_{n}\right), \quad H\left(X_{n} \mid X_{n-1}\right)$ and $H\left(X_{n}, X_{n+1}, X_{n+2}\right)$ for the source.
b) Code the sequence

$$
a a b b c c
$$

using arithmetic coding. The coding should utilize the memory of the source. Give both the interval and the corresponding codeword. You can assume that the source is in state a when the coding starts and that all calculations are performed with infinite precision.

5 A source has the alphabet $\mathcal{A}=\{m, n, o, p\}$. A symbol sequence of length 8 is coded using BWT and mtf. The resulting index is 5 and the mtf-coded sequence is $2,0,3,0,0,1,2,0$. Decode the symbol sequence.
a) Code the sequence that begins

kankankapankanbbbbapane...

using LZSS. The length of the history buffer (search buffer) is chosen as 512. Matchlengths are coded using 4 bit fixed length codewords.
b) A sequence from the source is coded using LZW, giving the following index sequence:

$$
6,0,16,18,0,12,8,16,21,6,14,25,27,4, \ldots
$$

The initial dictionary is:

index	symbol	index	symbol
0	a	8	i
1	b	9	j
2	c	10	k
3	d	11	l
4	e	12	m
5	f	13	n
6	g	14	o
7	h	15	p

Decode the index sequence as far as possible. Also give the resulting dictionary.

