

Solutions to Written Exam in Data compression TSBK08

9th June 2022

- 1 a) See the course literature.
 - b) See the course literature.
 - c) See the course literature.
 - d) See the course literature.
- 2 See the course literature.
- 3 A Huffman code for the distribution gives the mean codeword length $\bar{l} = 2.99$ bits/codeword and average data rate $R = \bar{l} = 2.99$ bits/symbol.

For comparison, the entropy rate of the source is $H(X_i) \approx 2.9645$.

4 Inverse mtf gives the vector L = [bbbddaaa].

Sort the sequence to get the vector F = [aaabbbdd] which gives us the vector $T = [5 \ 6 \ 7 \ 0 \ 1 \ 2 \ 3 \ 4]$ (the position in L where you find each symbol in F).

Inverse BWT gives the sequence *adbadbab*.

a) Stationary probabilities $p(x_i, x_{i-1})$ for the states (pairs of symbols):

$$p(aa) = \frac{12}{23}, \ \ p(ab) = \frac{2}{23}, \ \ p(ba) = \frac{2}{23}, \ \ p(bb) = \frac{7}{23}$$

From this distribution we calculate $H(X_i, X_{i-1}) \approx 1.6248$.

The marginal distribution gives us the probabilities for single symbols

$$p(a) = p(aa) + p(ab) = \frac{14}{23}, \ \ p(b) = p(ba) + p(bb) = \frac{9}{23}$$

From this distribution we calculate $H(X_i) \approx \underline{0.9656}$. We also get $H(X_i|X_{i-1}) = H(X_i, X_{i-1}) - H(X_{i-1}) \approx \underline{0.6592}$.

Probabilities for triples are given by $p(x_i, x_{i-1}, x_{i-2}) = p(x_{i-1}, x_{i-2}) \cdot p(x_i | x_{i-1} x_{i-2})$

$$p(aaa) = \frac{108}{230}, \ p(baa) = \frac{12}{230}, \ p(aab) = \frac{12}{230}, \ p(bab) = \frac{8}{230}$$

$$p(aba) = \frac{6}{230}, \ p(bba) = \frac{14}{230}, \ p(abb) = \frac{14}{230}, \ p(bbb) = \frac{56}{230}$$

From this distribution we calculate $H(X_i, X_{i-1}, X_{i-2}) \approx 2.2503$. We can rewrite

$$H(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}) = H(X_{i}, X_{i+1}, X_{i+2}) + H(X_{i+3}|X_{i}, X_{i+1}, x_{i+2}) = = H(X_{i}, X_{i+1}, X_{i+2}) + H(X_{i+3}|X_{i+1}, x_{i+2}) = = 2 \cdot H(X_{i}, X_{i+1}, X_{i+2}) - H(X_{i}, X_{i+1}) \approx \approx 2.8758$$

where we used the fact that source is of order 2 and stationary.

b) Assuming that we start in state *aa* and that we always place the *a* interval closest to 0, the interval belonging to the sequence is $[0.67797 \ 0.688176)$. The interval has the size 0.010206. We thus need at least $[-\log_2 0.010206] = 7$ bits in our codeword.

The smallest seven bit number inside the interval is $(0.1010111)_2 = 0.6796875$. We check the largest number starting with these bits: $(0.1010111111111...)_2 = (0.1011)_2 = 0.6875 < 0.688716$. It is enough to use seven bits.

The codeword is 1010111.

5

6 The decoded sequence is

$sussus sus rrrtus srrrtu \dots$

and the dictionary looks like

index	word	index	word	index	word	index	word
0	r	4	su	8	uss	12	rt
1	s	5	us	9	sur	13	tu
2	t	6	ss	10	rr	14	ussr
3	u	7	ssu	11	rrr	15	rrrt

and the next word to add to position 16 is tu*, where * will be the first symbol in the next decoded word.

7 The differential entropy is given by

$$h(X) = -\int_{-\infty}^{\infty} f(x) \log f(x) dx$$

= $-\int_{0}^{1} \frac{1}{2} \log \frac{1}{2} dx - \int_{1}^{2} \frac{1}{3} \log \frac{1}{3} dx - \int_{2}^{3} \frac{1}{6} \log \frac{1}{6} dx$
= $-\frac{1}{2} \log \frac{1}{2} - \frac{1}{3} \log \frac{1}{3} - \frac{1}{6} \log \frac{1}{6}$
= $\frac{\log 432}{6} \approx 1.4591$ [bits]