Solutions to Written Exam in
 Data compression TSBK08

9th June 2022

1 a) See the course literature.
b) See the course literature.
c) See the course literature.
d) See the course literature.

2 See the course literature.

3 A Huffman code for the distribution gives the mean codeword length $\bar{l}=2.99$ bits/codeword and average data rate $R=\bar{l}=2.99$ bits/symbol.
For comparison, the entropy rate of the source is $H\left(X_{i}\right) \approx 2.9645$.

4 Inverse mtf gives the vector $L=[b b b d d a a a]$.
Sort the sequence to get the vector $F=[a a a b b b d d]$ which gives us the vector $T=\left[\begin{array}{llllll}5 & 6 & 7 & 1 & 2 & 3\end{array}\right]$ (the position in L where you find each symbol in F).

Inverse BWT gives the sequence adbadbab.
a) Stationary probabilities $p\left(x_{i}, x_{i-1}\right)$ for the states (pairs of symbols):

$$
p(a a)=\frac{12}{23}, \quad p(a b)=\frac{2}{23}, \quad p(b a)=\frac{2}{23}, \quad p(b b)=\frac{7}{23}
$$

From this distribution we calculate $H\left(X_{i}, X_{i-1}\right) \approx 1.6248$.
The marginal distribution gives us the probabilities for single symbols

$$
p(a)=p(a a)+p(a b)=\frac{14}{23}, \quad p(b)=p(b a)+p(b b)=\frac{9}{23}
$$

From this distribution we calculate $H\left(X_{i}\right) \approx \underline{0.9656}$. We also get $H\left(X_{i} \mid X_{i-1}\right)=H\left(X_{i}, X_{i-1}\right)-H\left(X_{i-1}\right) \approx \underline{0.6592}$.
Probabilities for triples are given by

$$
\begin{aligned}
& p\left(x_{i}, x_{i-1}, x_{i-2}\right)=p\left(x_{i-1}, x_{i-2}\right) \cdot p\left(x_{i} \mid x_{i-1} x_{i-2}\right) \\
& \quad p(a a a)=\frac{108}{230}, p(b a a)=\frac{12}{230}, p(a a b)=\frac{12}{230}, p(b a b)=\frac{8}{230} \\
& \quad p(a b a)=\frac{6}{230}, p(b b a)=\frac{14}{230}, p(a b b)=\frac{14}{230}, p(b b b)=\frac{56}{230}
\end{aligned}
$$

From this distribution we calculate $H\left(X_{i}, X_{i-1}, X_{i-2}\right) \approx 2.2503$.
We can rewrite

$$
\begin{aligned}
H\left(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}\right) & =H\left(X_{i}, X_{i+1}, X_{i+2}\right)+H\left(X_{i+3} \mid X_{i}, X_{i+1}, x_{i+2}\right)= \\
& =H\left(X_{i}, X_{i+1}, X_{i+2}\right)+H\left(X_{i+3} \mid X_{i+1}, x_{i+2}\right)= \\
& =2 \cdot H\left(X_{i}, X_{i+1}, X_{i+2}\right)-H\left(X_{i}, X_{i+1}\right) \approx \\
& \approx \underline{2.8758}
\end{aligned}
$$

where we used the fact that source is of order 2 and stationary.
b) Assuming that we start in state $a a$ and that we always place the a interval closest to 0 , the interval belonging to the sequence is [0.67797 0.688176). The interval has the size 0.010206 .
We thus need at least $\left\lceil-\log _{2} 0.010206\right\rceil=7$ bits in our codeword.
The smallest seven bit number inside the interval is $(0.1010111)_{2}=$ 0.6796875 . We check the largest number starting with these bits: $(0.1010111111111 \ldots)_{2}=(0.1011)_{2}=0.6875<0.688716$.
It is enough to use seven bits.
The codeword is 1010111.

6 The decoded sequence is

> susssussurrrrtussrrrtu...
and the dictionary looks like

index	word	index	word	index	word	index	word
0	r	4	$s u$	8	$u s s$	12	$r t$
1	s	5	$u s$	9	$s u r$	13	$t u$
2	t	6	$s s$	10	$r r$	14	ussr
3	u	7	$s s u$	11	$r r r$	15	rrrt

and the next word to add to position 16 is $t u *$, where $*$ will be the first symbol in the next decoded word.
$7 \quad$ The differential entropy is given by

$$
\begin{aligned}
h(X) & =-\int_{-\infty}^{\infty} f(x) \log f(x) d x \\
& =-\int_{0}^{1} \frac{1}{2} \log \frac{1}{2} d x-\int_{1}^{2} \frac{1}{3} \log \frac{1}{3} d x-\int_{2}^{3} \frac{1}{6} \log \frac{1}{6} d x \\
& =-\frac{1}{2} \log \frac{1}{2}-\frac{1}{3} \log \frac{1}{3}-\frac{1}{6} \log \frac{1}{6} \\
& =\frac{\log 432}{6} \approx 1.4591 \quad[\mathrm{bits}]
\end{aligned}
$$

