Written Exam in
 Data compression TSBK08

9th June 2022 8:00-12:00

Location:	TER1
Examiner:	Harald Nautsch
Teacher:	Harald Nautsch, 0701718715
Department:	ISY
Module:	TEN1
Number of problems:	7
Number of pages:	4
Permitted equipment:	Calculator, general English dictionaries
Other:	Answers can be given in English or in
	Swedish.
	The teacher will visit at 9:15 and 10:45
	$0-13$
Grades:	$14-19$
	$20-25$
	4
	$26-30$

a) Describe the following classes of source codes and how they relate to each other.

- Uniquely decodable codes.
- Instantaneous codes.
- Tree codes.
b) Explain how adaptive arithmetic coding works.
c) Explain what a Golomb code is and what type of probability distribution it is good for.
d) Explain what the rate-distortion function is and how it is calculated for a stationary memoryless random source.

2 Formulate Kraft's inequality and give a proof of it.

3 A memoryless source has the alphabet

$$
\mathcal{A}=\{a, b, c, d, e, f, g, h, i, j\}
$$

The symbol probabilities are

$$
\begin{gathered}
p(a)=0.25, p(b)=0.2, p(c)=0.14, p(d)=0.12, p(e)=0.07 \\
p(f)=0.07, p(g)=0.06, p(h)=0.03, p(i)=0.03, p(j)=0.03
\end{gathered}
$$

Construct a Huffman code for the source and calculate the resulting average data rate (in bits/symbol) of the code.

4 A source has the alphabet $\mathcal{A}=\{a, b, c, d\}$. A symbol sequence of length 8 is coded using BWT and mtf. The resulting index is 2 and the mtf-coded sequence is $1,0,0,3,0,2,0,0$. Decode the symbol sequence.

5 A second order Markov source X_{i} with alphabet $\mathcal{A}=\{a, b\}$ is given by the transition probabilities $p\left(x_{i} \mid x_{i-1} x_{i-2}\right)$ below (note the symbol order)

$$
\begin{array}{ll}
p(a \mid a a)=0.9, & p(b \mid a a)=0.1 \\
p(a \mid a b)=0.6, & p(b \mid a b)=0.4 \\
p(a \mid b a)=0.3, & p(b \mid b a)=0.7 \\
p(a \mid b b)=0.2, & p(b \mid b b)=0.8
\end{array}
$$

a) Calculate the entropies $H\left(X_{i}\right), \quad H\left(X_{i} \mid X_{i-1}\right)$ and $H\left(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}\right)$ for the source.
b) Code the sequence

$$
a a a b b a
$$

using arithmetic coding. The coding should use the memory of the source. Give both the interval and the corresponding codeword. You can assume that the source is in state $a a$ when the coding starts and that all calculations are performed with infinite precision.

6 A source has the alphabet $\{r, s, t, u\}$. A sequence from the source is coded using LZW and gives the following index sequence:

$$
1,3,1,6,5,4,0,10,0,2,8,11,13, \ldots
$$

The starting dictionary is:

index	sequence
0	r
1	s
2	t
3	u

Decode the index sequence. Also give the resulting dictionary.

7 Calculate the differential entropy of the continuous random variable X with probability density function $f(x)$

$$
f(x)= \begin{cases}1 / 2 & ; 0 \leq x \leq 1 \\ 1 / 3 & ; 1<x \leq 2 \\ 1 / 6 & ; 2<x \leq 3 \\ 0 & ; \text { otherwise }\end{cases}
$$

