Solutions to Written Exam in
 Data compression TSBK08

21st March 2022

1 a) See the course literature.
b) See the course literature.
c) See the course literature.
d) See the course literature.
e) See the course literature.
f) See the course literature.

2 See the course literature.

3 Assume that we have M levels in our quantizer. The stepsize will then be $\Delta=\frac{2}{M}$. The mean square error will be $D=\frac{\Delta^{2}}{12}=\frac{1}{3 M^{2}}$.
By coding sufficently long sequences into each codeword, the rate can be arbitrarily close to the entropy rate of the quantized signal \hat{X}_{k}. The quantized signal is memoryless, discrete uniformly distributed with alphabet size M. Thus the rate is given by

$$
R=H\left(\hat{X}_{k}\right)=\log _{2} M=\frac{1}{2} \log _{2} M^{2}=\frac{1}{2} \log _{2} \frac{1}{3 D}
$$

From the given distribution we can easily find the marginal distributions for pairs of symbols $p\left(x_{i}, x_{i+1}\right)$ and single symbols $p\left(x_{i}\right)$:

$$
\begin{array}{ll}
p(a, a)=7 / 11 & p(a, b)=1 / 11 \\
p(b, a)=1 / 11 & p(b, b)=2 / 11
\end{array}
$$

$$
p(a)=8 / 11 \quad p(b)=3 / 11
$$

From these distributions we can calculate the entropies

$$
\begin{aligned}
H\left(X_{i}\right) & \approx 0.8454 \\
H\left(X_{i}, X_{i+1}\right) & \approx 1.4911 \\
H\left(X_{i}, X_{i+1}, X_{i+2}\right) & \approx 2.1182
\end{aligned}
$$

$H\left(X_{i}\right)$ is the entropy rate of the memoryless model. For the two Markov models we can find the entropy rates using the chain rule:

$$
\begin{aligned}
H\left(X_{i+1} \mid X_{i}\right) & =H\left(X_{i}, X_{i+1}\right)-H\left(X_{i}\right) \approx 0.6458 \\
H\left(X_{i+2} \mid X_{i}, X_{i+1}\right) & =H\left(X_{i}, X_{i+1}, X_{i+2}\right)-H\left(X_{i}, X_{i+1}\right) \approx 0.6271
\end{aligned}
$$

The conditional probabilities are given by

$$
\begin{aligned}
p\left(x_{i+1} \mid x_{i}\right) & =\frac{p\left(x_{i}, x_{i+1}\right)}{p\left(x_{i}\right)} \\
p\left(x_{i+2} \mid x_{i}, x_{i+1}\right) & =\frac{p\left(x_{i}, x_{i+1}, x_{i+2}\right)}{p\left(x_{i}, x_{i+1}\right)}
\end{aligned}
$$

The state model for the order 1 model looks like

Given states $\left(x_{i}, x_{i+1}\right)$, the state diagram for the order 2 model looks like

5 A Huffman code for the distribution gives the mean codeword length $\bar{l} \approx 2.1545$ bits/codeword and average data rate $R=\frac{l}{3} \approx$ 0.7182 bits/symbol.

6 Under the assumption that the subintervals are always ordered in the same order as in the alphabet, we will get the interval [0.8512 0.82992) with size 0.001792 . (Simple check: $0.2 \cdot 0.8 \cdot 0.8 \cdot$ $0.1 \cdot 0.2 \cdot 0.7=0.001792$).
We will need at least $\left\lceil-\log _{2} 0.001792\right\rceil=10$ bits in our codeword, maybe one more.

Write the two limits as binary numbers:

$$
\begin{aligned}
0.8512 & =0.11011001111010000011 \ldots \\
0.852992 & =0.11011010010111011010 \ldots
\end{aligned}
$$

The smallest number with ten bits in the interval is 0.1101101000 . All numbers that start with these bits are also inside the interval (ie smaller than the upper limit). Ten bits will therefore be enough. The codeword is thus $\mathbf{1 1 0 1 1 0 1 0 0 0}$.

7 a) The history buffer size is $256=2^{8}$. The alphabet size is $16=$ 2^{4}, If we code a single symbol we will use a total of $1+4=5$ bits and if we code a match we will use a total of $1+8+4=13$ bits. This means that it is better to code matches of length 1 and 2 as single symbols. Since we use 4 bits for the lengths, we can then code match lengths between 3 and 18. The codeword for length l is the 4 bit binary representation of $l-3$.
b) Resulting codewords. Offset 0 is the most recent position in the buffer.

f	0	1	c	codeword	sequence
0			b	00001	b
0			a	00000	a
0			d	00011	d
1	2	4		1000000100001	badb
0			e	00100	e
0			p	01111	p
1	0	4		1000000000001	pppp
1	8	7		1000010000100	adbeppp
1	3	3		1000000110000	epp
0			0	01110	o

