Written Exam inData compressionTSBK08
21st March 2022 14:00-18:00
Location: FE245
Examiner: Harald Nautsch
Teacher: Harald Nautsch, 281361
Department: ISY
Exam code: TEN1Number of problems: 7
Number of pages: 4
Permitted equipment: Calculator, general English dictionaries
Other: Answers can be given in English or inSwedish.The teacher will visit at 15:15 and 16:45
0-13 U14-19 3
20-25 4
26-30 5

1
a) Explain what an instantaneous code is.
b) Formulate Kraft-McMillan's inequality.
c) What type of coding is used in PNG images?
d) Explain how prediction with partial match (ppm) coding works.
e) Explain what a Golomb code is and what type of probability distribution it is good for.
f) Explain how coding and decoding of data using BurrowsWheelers transform is done.

2 A stationary random source X_{i} is coded using an optimal code. Show that the average rate R is bounded by

$$
H\left(X_{i}\right) \leq R<H\left(X_{i}\right)+1
$$

if we code one symbol with each codeword.

3 Let X_{k} be a stationary memoryless time-discrete amplitudecontinuous random process. The amplitudes are uniformly distributed over the interval $\left[\begin{array}{ll}-1 & 1\end{array}\right]$.

X_{k} is quantized with a uniform quantizer and then source coded using an arithmetic coder. The number of symbols n that is coded with each codeword can be assumed to be large. What is the resulting rate R (in bits/symbol) as a function of the mean square error D ?

4 A binary source has the alphabet $\mathcal{A}=\{a, b\}$. From a large set of test data, the probabilities of triples $p\left(x_{i}, x_{i+1}, x_{i+2}\right)$ have been estimated as

$$
\begin{array}{ll}
p(a, a, a)=63 / 110 & p(a, a, b)=7 / 110 \\
p(a, b, a)=4 / 110 & p(a, b, b)=6 / 110 \\
p(b, a, a)=7 / 110 & p(b, a, b)=3 / 110 \\
p(b, b, a)=6 / 110 & p(b, b, b)=14 / 110
\end{array}
$$

From these estimated probabilities we can make random models that are memoryless or Markov sources of order 1 or 2. Calculate the entropy rate for each of the three possible source models. For the two Markov models also draw the corresponding state diagrams.

5 Consider the source in problem 4.
Construct a Huffman code for the triples and calculate the resulting average data rate (in bits/symbol) of the code.

6 A stationary Markov source X_{n} of order 1, with alphabet $\mathcal{A}=$ $\{1,2,3\}$, is given by the state diagram below

Code the sequence

$$
222311
$$

using arithmetic coding. The coding should utilize the memory of the source. Give both the interval and the corresponding codeword. You can assume that the source is in state 1 when the coding starts and that all calculations are performed with infinite precision.

7 A source has the alphabet $\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}$. We want to code the source using LZSS.
a) Assume that we want to use a history buffer length of 256 and that we want use 4 bits to code the match lengths. What is the shortest match length that should be coded as a match instead of a sequence of single symbols?
b) Code the sequence beginning with
badbadbepppppadbepppeppo...
Give the resulting binary codewords.

