

Written Exam in Data compression TSBK08

21st March 2022 14:00 - 18:00

Location:	FE245		
Examiner:	Harald Nautsch		
Teacher:	Harald Nautsch, 281361		
Department:	ISY		
Exam code:	TEN1		
Number of problems:	7		
Number of pages:	4		
Permitted equipment:	Calculator, general English dictionaries		
Other:	Answers can be given in English or in Swedish. The teacher will visit at 15:15 and 16:45		
Grades:	0-13 U 14-19 3 20-25 4 26-30 5		

a) Explain what an instantaneous code is.	
	(1 p)
b) Formulate Kraft-McMillan's inequality.	
	(1 p)
c) What type of coding is used in PNG images?	
	(1 p)
d) Explain how prediction with partial match (ppm) codia works.	ng
	(2 p)
e) Explain what a Golomb code is and what type of probabili distribution it is good for.	ty
	(2 p)
f) Explain how coding and decoding of data using Burrow Wheelers transform is done.	7S-
	(2 p)

2 A stationary random source X_i is coded using an optimal code. Show that the average rate R is bounded by

$$H(X_i) \le R < H(X_i) + 1$$

if we code one symbol with each codeword.

1

(4 p)

3 Let X_k be a stationary memoryless time-discrete amplitudecontinuous random process. The amplitudes are uniformly distributed over the interval $[-1 \ 1]$.

 X_k is quantized with a uniform quantizer and then source coded using an arithmetic coder. The number of symbols *n* that is coded with each codeword can be assumed to be large. What is the resulting rate *R* (in bits/symbol) as a function of the mean square error *D*?

(2 p)

4 A binary source has the alphabet $\mathcal{A} = \{a, b\}$. From a large set of test data, the probabilities of triples $p(x_i, x_{i+1}, x_{i+2})$ have been estimated as

 $\begin{array}{ll} p(a,a,a) = 63/110 & p(a,a,b) = 7/110 \\ p(a,b,a) = 4/110 & p(a,b,b) = 6/110 \\ p(b,a,a) = 7/110 & p(b,a,b) = 3/110 \\ p(b,b,a) = 6/110 & p(b,b,b) = 14/110 \end{array}$

From these estimated probabilities we can make random models that are memoryless or Markov sources of order 1 or 2. Calculate the entropy rate for each of the three possible source models. For the two Markov models also draw the corresponding state diagrams.

(4 p)

5 Consider the source in problem 4.

Construct a Huffman code for the triples and calculate the resulting average data rate (in bits/symbol) of the code.

(3 p)

6 A stationary Markov source X_n of order 1, with alphabet $\mathcal{A} = \{1, 2, 3\}$, is given by the state diagram below

Code the sequence

222311

using arithmetic coding. The coding should utilize the memory of the source. Give both the interval and the corresponding codeword. You can assume that the source is in state 1 when the coding starts and that all calculations are performed with infinite precision.

(4 p)

7 A source has the alphabet $\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}$. We want to code the source using LZSS.

a) Assume that we want to use a history buffer length of 256 and that we want use 4 bits to code the match lengths. What is the shortest match length that should be coded as a match instead of a sequence of single symbols?

(1 p)

b) Code the sequence beginning with

 $badbadbeppppadbepppeppo\dots$

Give the resulting binary codewords.

(3 p)