Examination TSTE25

Date:
Time:
Tentajour:
Permitted aids: A sheet of paper with formulae and a scientific calculator.

Exercise 1. A power transmission company has been tasked with building a 600 kV 5000 MW HVDC link between Stavanger, Norway to Fraserburgh, Scotland. A key component in the HVDC link is the power converter. What is the type and rating of semiconductor switches should they consider for the converter? Motivate.

Solution

Semiconductor switch type: A modular multilevel converter with several submodules with IGBTs.

Minimum Voltage rating:
600 kV
Total number of submodules

Exercise 2. Consider all components to be ideal in a step-down converter used in a small portable PV phone charger and let the average output voltage $\left(V_{o}\right)$ be held constant at 5 V . If input voltage $\left(V_{i}\right)$ is $10-40 \mathrm{~V}$, output power, $P_{o} \geq 15 \mathrm{~W}$, and switching frequency, $f_{s}=50 \mathrm{kHz}$, calculate the following:
a) The switch duty ratio (D) that is required to maintain the average output voltage of 5 V .
(1 point)

Solution

Duty cycle,

$$
D=\frac{V_{o}}{V_{i n}}
$$

$D=50 \%$ when $V_{i n}=10 \mathrm{~V}$ and $D=12.5 \%$ when $V_{\text {in }}=40 \mathrm{~V}$.
b) The minimum inductance (L) required to keep the converter operation in a continuous-conduction mode under all conditions.
(4 point)

Solution

The average output current I_{o} is

$$
I_{o}=\frac{P_{o}}{V_{o}}=\frac{15}{5}=3 \mathrm{~A} .
$$

For the converter operating at the boundary between continuous and discontinuous conduction mode, the peak-to-peak current ripple ($\left.\Delta I_{L(p p)}\right)$ is

$$
\Delta I_{L(p p)}=2 I_{o}=6 \mathrm{~A}
$$

The inductance at the boundary condition is

$$
L=\frac{V_{o}}{\Delta I_{L(p p)} f_{s w}}(1-D) .
$$

$L=8.3 \mu \mathrm{H}$ at $D=50 \%$ when $V_{\text {in }}=10 \mathrm{~V}$ and $L=14.58 \mu \mathrm{H}$ at $D=12.5 \%$ when $V_{\text {in }}=40 \mathrm{~V}$.
If $L=8.3 \mu \mathrm{H}$ at $D=12.5 \%$ when $V_{\text {in }}=40 \mathrm{~V}$. Then the peak-to-peak current ripple $\left(\Delta I_{L(p p)}^{\prime}\right)$ is

$$
\left.\Delta I_{L(p p)}^{\prime}=\frac{V_{o}}{L f_{s w}}(1-D)=10.5 \mathrm{~A}>6 \mathrm{~A} \text { (i.e., } 2 I_{o}\right) .
$$

Since $\Delta I_{L(p p)}^{\prime}>2 I_{o}$, the converter is in discontinuous conduction mode. If $L=14.58 \mu \mathrm{H}$ at $D=50 \%$ when $V_{i n}=10 \mathrm{~V}$. Then the peak-to-peak current ripple $\left(\Delta I_{L(p p)}^{\prime \prime}\right)$ is

$$
\left.\Delta I_{L(p p)}^{\prime \prime}=\frac{V_{o}}{L f_{s w}}(1-D)=3.43 \mathrm{~A}<6 \mathrm{~A} \text { (i.e., } 2 I_{o}\right) .
$$

Since $\Delta I_{L(p p)}^{\prime \prime}<2 I_{o}$, the converter is in continuous conduction mode.
Therefore, $L=14.58 \mu \mathrm{H}$ is the minimum inductance required to keep the converter operation in a continuous-conduction mode under all conditions.
c) The minimum capacitance (C) required to keep the output peak-to-peak ripple to be 10% of the average output voltage.

Solution

The output peak-to-peak ripple $\left(\Delta V_{o(p p)}\right)$ is 10% of the average output voltage V_{o}, i.e., $\Delta V_{o(p p)}=$ $0.1 V_{o}=0.5 \mathrm{~V}$.
The capacitance at the to keep the output peak-to-peak ripple to be 10% of V_{o} is

$$
C=\frac{(1-D) V_{o}}{8 f_{s w}^{2} L \Delta V_{o(p p)}}
$$

$C=17.15 \mu \mathrm{~F}$ at $D=50 \%$ when $V_{i n}=10 \mathrm{~V}$ and $C=30 \mu \mathrm{~F}$ at $D=12.5 \%$ when $V_{i n}=40 \mathrm{~V}$. Since $\Delta I_{L(p p)}^{\prime}>2 I_{o}$, the converter is in discontinuous conduction mode. If $C=30 \mu \mathrm{~F}$ at $D=50 \%$ when $V_{i n}=10 \mathrm{~V}$. Then the peak-to-peak voltage ripple $\left(\Delta V_{o(p p)}^{\prime \prime}\right)$ is

$$
\left.\Delta V_{o(p p)}^{\prime}=\frac{(1-D) V_{o}}{8 f_{s w}^{2} L C}=0.3 \mathrm{~V}<0.5 \mathrm{~V} \text { (i.e., } 0.1 V_{o}\right) .
$$

With $C=30 \mu \mathrm{~F}$, the output peak-to-peak ripple is lower than 10% of V_{o}. If $C=17.5 \mu \mathrm{~F}$ at $D=12.5 \%$ when $V_{i n}=40 \mathrm{~V}$. Then the peak-to-peak voltage ripple $\left(\Delta V_{o(p p)}^{\prime}\right)$ is

$$
\left.\Delta V_{o(p p)}^{\prime}=\frac{(1-D) V_{o}}{8 f_{s w}^{2} L C}=0.88 \mathrm{~V}>0.5 \mathrm{~V} \text { (i.e., } 0.1 V_{o}\right)
$$

With $C=17.5 \mu \mathrm{~F}$, the output peak-to-peak ripple is larger than 10% of V_{o}.
Therefore, $C=30 \mu \mathrm{~F}$ is the minimum capacitance required to keep the converter output voltage below 10% of V_{o}.
d) The minimum efficiency of the DC-DC converter. IRF540 MOSFETs are employed (datasheet found at the end of the document) and the voltage and current switching transient times are (4 point)

Solution

$$
t_{r i}=19 \mathrm{~ns}, \quad t_{f v}=34 \mathrm{~ns}, \quad t_{r v}=12 \mathrm{~ns}, \quad t_{f i}=16 \mathrm{~ns}
$$

The current through the MOSFET is assumed to be constant to simplify the calculations. Therefore, the RMS current through the MOSFET $\left(I_{v(\mathrm{rms})}\right)$ is

$$
I_{v(\mathrm{rms})}=I_{o}
$$

From the MOSFET datasheets, the on-state resistance of the MOSFET $\left(r_{d s(o n)}\right)$ is

$$
r_{d s(\mathrm{on})}=0.077 \Omega .
$$

The conduction losses of the MOSFET $\left(P_{c}^{l}\right)$ is

$$
P_{c}^{l}=D I_{v(\mathrm{rms})}^{2} r_{d s(\mathrm{on})} .
$$

$P_{c}^{l}=0.35 \mathrm{~W}$ at $D=50 \%$ when $V_{i n}=10 \mathrm{~V}$ and $P_{c}^{l}=0.087 \mathrm{~W}$ at $D=12.5 \%$ when $V_{i n}=40 \mathrm{~V}$. The switching losses of the MOSFET $\left(P_{s}^{l}\right)$ is

$$
P_{s}^{l}=\frac{1}{2} V_{i n} I_{o} t_{s w} f_{s w}=\frac{1}{2} V_{i n} I_{o}\left(t_{r i}+t_{f v}+t_{r v}+t_{f i}\right) f_{s w} .
$$

$P_{s}^{l}=0.061 \mathrm{~W}$ at $D=50 \%$ when $V_{i n}=10 \mathrm{~V}$ and $P_{s}^{l}=0.24 \mathrm{~W}$ at $D=12.5 \%$ when $V_{i n}=40 \mathrm{~V}$.
Note that the switching losses increase when D is lower. This is because $P_{s}^{l} \propto V_{i n} I_{o}$ but $P_{s}^{l} \propto I_{o}^{2}$.
The total losses in the MOSET $\left(P^{l}\right)$ is

$$
P^{l}=P_{c}^{l}+P_{s}^{l} .
$$

$P^{l}=0.41 \mathrm{~W}$ at $D=50 \%$ when $V_{\text {in }}=10 \mathrm{~V}$ and $P^{l}=0.33 \mathrm{~W}$ at $D=12.5 \%$ when $V_{\text {in }}=40 \mathrm{~V}$.
When P^{l} is high the efficiency is lower, i.e.,

$$
\eta=\frac{P_{o}}{P_{o}+P^{l}}
$$

the minimum efficiency (η) is 97.35% at $D=50 \%$ when $V_{i n}=10 \mathrm{~V}$.

Exercise 3. Consider all components to be ideal in a step-up converter used in a power management system in a vehicle and let the average output voltage $\left(V_{o}\right)$ be held constant at 5 V . If battery voltage on the input side $\left(V_{i}\right)$ is $2.9-4.2 \mathrm{~V}, P_{o} \geq 200 \mathrm{~W}$, and due to cost limitations, the only available passive components are an inductor, $L=10 \mu \mathrm{H}$, and several capacitors of $100 \mu \mathrm{~F}$. Calculate the following:
a) The switch duty ratio (D) that is required to maintain the average output voltage of 5 V .
(1 point)

Solution

Duty cycle,

$$
D=1-\frac{V_{i n}}{V_{o}}
$$

$D=42 \%$ when $V_{i n}=2.9 \mathrm{~V}$ and $D=16 \%$ when $V_{i n}=4.2 \mathrm{~V}$.
b) The minimum switching frequency $\left(f_{s}\right)$ required to keep the battery current peak-to-peak ripple below 10% of the average battery current.
(4 point)

Solution

In the boost converter, the input current is the current through the inductor. Assuming a loss-less DC-DC converter (i.e., power balance), the average inductor current $\left(I_{L}\right)$ is The average output current I_{o} is

$$
I_{L}=\frac{P_{o}}{V_{i n}}
$$

$I_{L}=68.97 \mathrm{~A}$ when $V_{i n}=2.9 \mathrm{~V}$ and $I_{L}=47.62 \mathrm{~A}$ when $V_{\text {in }}=4.2 \mathrm{~V}$.
The peak-to-peak current ripple $\left(\Delta I_{L(p p)}\right)$ is

$$
\Delta I_{L(p p)}=0.1 I_{L}
$$

$\Delta I_{L(p p)}=6.9 \mathrm{~A}$ when $V_{i n}=2.9 \mathrm{~V}$ and $\Delta I_{L(p p)}=4.8 \mathrm{~A}$ when $V_{i n}=4.2 \mathrm{~V}$.
The switching frequency required to achieve a desired peak-to-peak current ripple using an inductor with inductance (L) is

$$
f_{s w}=\frac{D V_{o}}{\Delta I_{L(p p)} L}(1-D)
$$

$f_{s w}=17.66 \mathrm{kHz}$ at $D=42 \%$ when $V_{i n}=2.9 \mathrm{~V}$ and $f_{s w}=14.11 \mathrm{kHz}$ at $D=16 \%$ when $V_{i n}=4.2 \mathrm{~V}$. If $f_{s w}=17.66 \mathrm{kHz}$ at $D=16 \%$ when $V_{i n}=4.2 \mathrm{~V}$. Then the peak-to-peak current ripple $\left(\Delta I_{L(p p)}^{\prime}\right)$ is

$$
\left.\Delta I_{L(p p)}^{\prime}=\frac{D V_{o}}{L f_{s w}}(1-D)=3.81 \mathrm{~A}<4.8 \mathrm{~A} \text { (i.e., } 0.1 I_{L}\right)
$$

Since $\Delta I_{L(p p)}^{\prime}<0.1 I_{L}$, the peak-to-peak ripple is lesser than the desired value.
If $f_{s w}=14.11 \mathrm{kHz}$ at $D=42 \%$ when $V_{i n}=2.9 \mathrm{~V}$. Then the peak-to-peak current ripple $\left(\Delta I_{L(p p)}^{\prime \prime}\right)$ is

$$
\Delta I_{L(p p)}^{\prime \prime}=\frac{D V_{o}}{L f_{s w}}(1-D)=8.63 \mathrm{~A}>6.9 \mathrm{~A}\left(\text { i.e., } 0.1 I_{L}\right)
$$

Since $\Delta I_{L(p p)}^{\prime \prime}>0.1 I_{L}$, the peak-to-peak ripple is greater than the desired value.
Therefore, $f_{s w}=17.66 \mathrm{kHz}$ is the minimum switching frequency required to keep the converter inductor (input) peak-to-peak converter ripple current less than 10% of the average inductor (input) current.
c) The minimum number of capacitors required to keep the output peak-to-peak voltage ripple below 10% of the average output voltage.

Solution

The average output current $\left(I_{o}\right)$ is

$$
I_{o}=\frac{P_{o}}{V_{o}}=40 \mathrm{~A}
$$

The output voltage peak-to-peak ripple $\left(\Delta V_{o(p p)}\right)$ is

$$
\Delta V_{o(p p)}=0.1 V_{o}=0.5 \mathrm{~V}
$$

The capacitance (C) required to keep the required peak-to-peak output voltage ripple is

$$
C=\frac{D I_{o}}{f_{s w} \Delta V_{o(p p)}}
$$

$C=1902.5 \mu \mathrm{~F}$ at $D=42 \%$ when $V_{\text {in }}=2.9 \mathrm{~V}$ and $C=725 \mu \mathrm{~F}$ at $D=16 \%$ when $V_{\text {in }}=4.2 \mathrm{~V}$.
If $C=725 \mu \mathrm{~F}$ at $D=42 \%$ when $V_{i n}=2.9 \mathrm{~V}$, the peak-to-peak output voltage ripple $\left(\Delta V_{o(p p)}^{\prime}\right)$ is

$$
\left.\Delta V_{o(p p)}^{\prime}=\frac{D I_{o}}{f_{s w} C}=1.31 \mathrm{~V}>0.5 \mathrm{~V} \text { (i.e., } 0.1 V_{o}\right)
$$

Since $\Delta V_{o(p p)}^{\prime}>0.1 V_{o}$, the peak-to-peak ripple is greater than the desired value.
If $C=1902.5 \mu \mathrm{~F}$ at $D=16 \%$ when $V_{\text {in }}=4.2 \mathrm{~V}$, the peak-to-peak output voltage ripple $\left(\Delta V_{o(p p)}^{\prime \prime}\right)$ is

$$
\left.\Delta V_{o(p p)}^{\prime \prime}=\frac{D I_{o}}{f_{s w} C}=0.19 \mathrm{~V}<0.5 \mathrm{~V} \text { (i.e., } 0.1 V_{o}\right)
$$

Since $\Delta V_{o(p p)}^{\prime \prime}<0.1 V_{o}$, the peak-to-peak ripple is lesser than the desired value.
Therefore, $C=1902.5 \mu \mathrm{~F}$ is the minimum capacitance required to keep the output voltage peak-to-peak ripple less than 10% of the average output voltage.
Since only $100 \mu \mathrm{~F}$ capacitors are available, the minimum number of capacitors ($N_{p(c a p)}$) required is by connecting them in parallel. i.e.,

$$
N_{p(c a p)}=\left\lceil\frac{C}{100 \mu}\right\rceil=20
$$

Exercise 4. For a half-bridge inverter, assuming all ideal components, the output waveforms are presented in Figure 1, where
peak inverter side voltage peak inverter side voltage (fundamental)
peak output current peak output voltage peak output voltage (fundamental)

$$
\begin{aligned}
\hat{v}_{s} & =12 \mathrm{~V}, \\
\hat{v}_{s(1)} & =9.61 \mathrm{~V}, \\
\hat{i}_{\text {out }} & =40.1 \mathrm{~A}, \\
\hat{v}_{\text {out }} & =11 \mathrm{~V}, \\
\hat{v}_{\text {out }(1)} & =8.37 \mathrm{~V} .
\end{aligned}
$$

Determine:

Figur 1: half-bridge inverter output waveforms.

Solution

Counting the number of positive/negative pulses (or, rising/falling edges) for v_{s} in Figure 1, gives the pulse number $\left(m_{f}\right)$ as

$$
m_{f}=9
$$

Since m_{f} is defined as

$$
m_{f}=\frac{f_{s w}}{f_{1}} \quad \Longrightarrow f_{s w}=m_{f} f_{1}
$$

where f_{1} is the fundamental frequency, and from Figure 1

$$
f_{1}=\frac{1}{0.02 \mathrm{~s}}=50 \mathrm{~Hz}
$$

Therefore,

$$
f_{s w}=m_{f} f_{1}=450 \mathrm{~Hz}
$$

b) The inductance

Solution

From Figure 1, during the time interval $t \in[0.008,0.095] \mathrm{s}$, the $v_{v}=12 \mathrm{~V}$ and for simplicity the voltage after the inductor $v_{\text {out }}$ is assumed to be 6 V . Then the voltage drop across the inductor is

$$
V_{L}=\left.\left(v_{\text {out }}(t)-v_{v}(t)\right)\right|_{t \in[0.008,0.095]}=\left.L \frac{d i(t)}{t}\right|_{t \in[0.008,0.095]} \Longrightarrow L=\left.\frac{v_{\text {out }}(t)-v_{v}(t)}{\frac{d i}{d t}}\right|_{t \in[0.008,0.095]}
$$

$d t=0.0095 \mathrm{~s}-0.008 \mathrm{~s}$, and from Figure $1, d i=35 \mathrm{~A}-15 \mathrm{~A}$. Therefore the inductance, L is

$$
L=\frac{12-6}{\frac{20}{0.0015}}=0.45 \mathrm{mH} .
$$

c) The peak fundamental current

Solution

The peak fundamental output current occurs at $0.0057 \mathrm{~s} \leq t \leq 0.0075 \mathrm{~s}$. The average current in this interval is the peak Fundamental output current $\left(\hat{i}_{\text {out }(1)}\right)$

$$
\hat{i}_{\text {out }(1)}=\frac{40.1+25}{2}=32.55 \mathrm{~A} .
$$

d) The pole-to-pole DC-link voltage $\left(V_{d}\right)$ and modulation index (m_{a})

Solution

In the half-bridge inverter, the pole-to-pole DC-link voltage $\left(V_{d}\right)$ is

$$
V_{d}=2 \hat{v}_{s}=24 \mathrm{~V}
$$

The modulation index $\left(m_{a}\right)$ is

$$
m_{a}=\frac{\hat{v}_{s(1)}}{V_{d} / 2}=0.8 .
$$

e) The active power on the load at the fundamental frequency.

Solution

The active power on the load $\left(P_{\text {out }}\right)$ at the fundamental frequency is

$$
P_{\text {out }}=\frac{\hat{v}_{\text {out }(1)} \hat{i}_{\text {out }(1)}}{2}=136.22 \mathrm{~W} .
$$

f) The phase angle of the fundamental current with respect to the inverter side voltage. (2 point)

Solution

At time $t=0$ s the reference signal (fundamental converter output voltage) is 0 V thus the converter output voltage $\left(v_{s}\right)$ is also assumed to be 0 V . However, the fundamental load current (or voltage) is $0 \mathrm{~A}($ or 0 V$)$ at $t=0.0012 \mathrm{~s}$. The time delay (δt) is

$$
\delta t=0.0012 \mathrm{~s} .
$$

If time $t=T=0.02 \mathrm{~s}$ is 2π, then time $t=\delta t$, i.e., phase angle (ϕ) is

$$
\phi=\frac{\delta t}{T} 2 \pi=21.6^{\circ}
$$

g) The active and reactive power on the converter at the fundamental frequency.

Solution

The active power $\left(P_{s}\right)$ on the converter side is

$$
P_{s}=\frac{\hat{v}_{s(1)} \hat{i}_{\text {out }(1)}}{2} \cos (\phi)=145.42 \mathrm{~W}
$$

The reactive power $\left(Q_{s}\right)$ on the converter side is

$$
Q_{s}=\frac{\hat{v}_{s(1)} \hat{i}_{\text {out }(1)}}{2} \sin (\phi)=57.58 \mathrm{Var} .
$$

Exercise 5. Consider the switched step-down converter shown in Figure 2. The drain current of the MOSFET as a function through one complete turn-on and turn-off sequence is shown in Figure 2. The switch $\left(S_{W}\right)$ and diode $\left(D_{f}\right)$ data are provided in Table 1.

Figur 2: Switched step-down converter and drain current transients.

Tabell 1: switch $\left(S_{W}\right)$ and diode $\left(D_{f}\right)$ data.

S_{W} data		D_{f} data	
$V_{d s(\max)}$	700 V	$V_{r m}$	800 V
$I_{d(\max)}$	400 V	$I_{\max }$	400 A
$T_{j(\max)}$	$150^{\circ} \mathrm{C}$	$T_{j(\max)}$	$150^{\circ} \mathrm{C}$
$R_{\theta(\mathrm{ja})}$	$0.1^{\circ} \mathrm{C} / \mathrm{W}$	$R_{\theta(\mathrm{jaz})}$	$1^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {on }}$	0.01Ω	$R_{o n}$	0.1Ω
		$V_{\text {on }}$	0.7 V

a) Sketch and dimension the drain-source voltage of S_{W} as a function of time. Assume that the voltage across the switch can change instantaneously and is only limited by the external circuit.

Solution

Drain Current

S_{W} voltage

Applying KVL to the circuit in Figure 2,

$$
V_{d}=V_{L}+V_{D_{f}}+V_{S_{W}},
$$

where $V_{d}=500 \mathrm{~V}$.
In region (1), the diode is in conduction, i.e., $V_{D_{F}}=0$, and $V_{S_{W}}$ is

$$
V_{S_{W}}=V_{d}-V_{L}=500-\frac{400-0}{100 \mathrm{n}} 100 \mathrm{n}=100 V
$$

When the diode current changes direction, i.e., becomes negative in region (2), the diode starts to block the voltage, i.e.,

$$
V_{D_{f}}=V_{d}-V_{L}=500-\frac{300-400}{50 \mathrm{n}} 100 \mathrm{n}=700 \mathrm{~V} . \quad \text { and } \quad V_{S_{W}}=0 \mathrm{~V}
$$

In region (3), the diode starts conduction, i.e., $V_{D_{F}}=0$, and $V_{S_{W}}$ is

$$
V_{S_{W}}=V_{d}-V_{L}=500-\frac{0-300}{100 \mathrm{n}} 100 \mathrm{n}=800 V
$$

b) Sketch and dimension the diode voltage as a function of time.

c) Are either the diode or the switch overstressed with respect to voltage? If so, specify by how much.
(2 point)

Solution

The diode is not overstressed because the breakdown voltage of the diode is 800 V and the maximum voltage across the diode is 700 V in region (2). However, the switch S_{W} is overstressed because in region (3), the voltage across the switch is 800 V but the rated voltage of the switch is 700 V .
d) Determine the junction temperature of the switch and the diode. Do not forget the losses during the switching transients, the diode reverse recovery, a duty cycle of 90%, and assuming a switching frequency of 10 kHz at an ambient temperature of $25^{\circ} \mathrm{C}$.
(6 point)

Solution

The losses in the switch during conduction $\left(P_{S_{W}(c)}^{l}\right)$ in region © is

$$
P_{S_{W}(c)}^{l}=D I_{d}^{2} R_{(o n)}=0.9300^{2} 0.01=810 \mathrm{~W}
$$

The losses in the switch during thee switching transients $\left(P_{S_{W}(s w)}^{l}\right)$ in regions (1) and in region (3) is

$$
P_{S_{W}(s w)}^{l}=\frac{1}{2} I_{d} V_{S_{W}} t_{o n} f_{s w}+\frac{1}{2} I_{d} V_{S_{W}} t_{o f f} f_{s w}=\frac{1}{2} 400100100 \mathrm{n} 10 \mathrm{k}+\frac{1}{2} 300800100 \mathrm{n} 10 \mathrm{k}=140 \mathrm{~W} .
$$

The total losses in the switch $\left(P_{S_{W}}^{l}\right)$ is

$$
P_{S_{W}}^{l}=P_{S_{W}(c)}^{l}+P_{S_{W}(s w)}^{l}=950 \mathrm{~W} .
$$

The junction temperature $\left(T_{j\left(S_{W}\right)}\right)$ of the switch is

$$
T_{j\left(S_{W}\right)}=P_{S_{W}}^{l} R_{\theta j a}+T_{a}=950 \times 0.1+25=120^{\circ} \mathrm{C}
$$

If the rate of change of current is \mathcal{M}_{i}, the RMS current through the diode in region (1) $\left(I_{D_{f}}(1)\right.$ is

$$
\begin{aligned}
I_{D_{f}(\mathbb{1})} & =\sqrt{\frac{1}{T_{s w}} \int_{0}^{t}(\mathbb{1})\left(\mathcal{M}_{i} t\right)^{2} d t}=\sqrt{\frac{1}{T_{s w}} \int_{0}^{t}(\mathbb{1})\left(\mathcal{M}_{i}\right)^{2} t^{2} d t}=\mathcal{M}_{i} \sqrt{\frac{1}{T_{s w}} \int_{0}^{t}(\mathbb{1}) t^{2} d t} \\
& =\mathcal{M}_{i} \sqrt{\frac{1}{T_{s w}}\left[t^{3}\right]_{0}^{t}(\mathbb{1})}=\mathcal{M}_{i} \sqrt{\frac{1}{T_{s w}}\left(t^{3}(\mathbb{1})\right.}=\mathcal{M}_{i} t(\mathbb{1}) \sqrt{f_{s w} t(1)} \\
& =\frac{400}{100 \times 10^{-9}} 100 \times 10^{-9} \sqrt{100 \times 10^{-9} \times 10^{4}}=12.64 \mathrm{~A} .
\end{aligned}
$$

Similarly, the RMS current through the diode in region (3) $\left(I_{D_{f}(3)}\right)$ is

$$
I_{D_{f}(3)}=300 \sqrt{100 \times 10^{-9} \times 10^{4}}=9.5 \mathrm{~A} .
$$

The losses in the diode during conduction $\left(P_{D_{f}(c)}^{l}\right)$ in region (1) and (3) is

$$
P_{D_{f}(c)}^{l}=I_{D_{f}(1)}^{2} R_{(o n)}+\frac{1}{2} I_{d} V_{(o n)} t_{(1)} f_{s w}+I_{D_{f}(3)}^{2} R_{o n}+\frac{1}{2} I_{d} V_{(o n)} t_{(3)} f_{s w}=25.25 \mathrm{~W} .
$$

The losses in the diode during switching transients, i.e., reverse recovery, in $\left(P_{D_{f}(r r)}^{l}\right)$ in (2) is

$$
P_{D_{f}(r r)}^{l}=\frac{1}{2} I_{d} V_{D_{f}} t_{(2)} f_{s w}=\frac{1}{2}(400-300) 70050 \mathrm{n} 10 \mathrm{k}=17.5 \mathrm{~W}
$$

The total losses in the diode $\left(P_{D_{f}}^{l}\right)$ is

$$
P_{D_{f}}^{l}=P_{D_{f}(c)}^{l}+P_{D_{f}(r r)}^{l}=42.75 \mathrm{~W} .
$$

The junction temperature $\left(T_{j\left(D_{f}\right)}\right)$ of the diode is

$$
T_{j\left(D_{f}\right)}=P_{D_{f}}^{l} R_{\theta j a}+T_{a}=42.75 \times 1+25=67.75^{\circ} \mathrm{C}
$$

Exercise 6. Consider the problem of ripple in the output current of a single-phase full-bridge inverter. Assume $V_{o(1)}=200 \mathrm{~V}$ and $I_{o(1)}=10 \mathrm{~A}$ at a frequency of 50 Hz and an induction motor load with the inductance of $\mathrm{L}=10 \mathrm{mH}$. Calculate the peak value of the inverter ripple current if the converter is operating in a sinusoidal unipolar PWM mode, with $m_{f}=21$ and $m_{a}=0.8$.
(8 point)
Tabell 2: Generalized harmonics of a half-bridge inverter output voltage for a large m_{f}.

$h \downarrow m_{a} \rightarrow$	0.2	0.4	0.6	0.8	1
1	0.2	0.4	0.6	0.8	1
Fundamental					
m_{f}	1.242	1.15	1.006	0.818	0.6023
$m_{f} \pm 2$	0.061	0.061	0.131	0.22	0.318
$m_{f} \pm 4$					0.018
$2 m_{f} \pm 1$	0.19	0.326	0.37	0.314	0.181
$2 m_{f} \pm 3$		0.024	0.071	0.139	0.212
$2 m_{f} \pm 5$				0.013	0.033
$3 m_{f}$	0.335	0.123	0.083	0.171	0.133
$3 m_{f} \pm 2$	0.044	0.139	0.203	0.176	0.062
$3 m_{f} \pm 4$		0.012	0.047	0.104	0.157
$3 m_{f} \pm 6$				0.016	0.044
$4 m_{f} \pm 1$	0.163	0.157	0.088	0.105	0.068
$4 m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4 m_{f} \pm 5$			0.034	0.084	0.119
$4 m_{f} \pm 7$				0.017	0.05

Note: output voltage $\left(\hat{V}_{o}\right)$ is $\hat{V}_{o}=m_{a} V_{d} / 2$.

Solution

The equivalent circuit at the fundamental frequency is given as follows

From the figure,

$$
V_{L(1)}=\omega_{1} L I_{o(1)}=2 \pi 5010 \times 10^{-3} 10=31.42 \mathrm{~V}
$$

Also from the figure,

$$
V_{s(1)}=V_{L(1)}+V_{o(1)}=31.46+200=231.42 \mathrm{~V}
$$

If the modulation index, $m_{a}=0.8$, then the DC-link pole-to-pole voltage $\left(V_{d}\right)$ is

$$
V_{d}=\frac{V_{s(1)} \sqrt{2}}{m_{a}}=409.1 \mathrm{~V}
$$

The equivalent circuit at the $n^{\text {th }}$ harmonic, where $n \neq 1$ is given as follows

From the figure,

$$
V_{s(n)}=V_{L(n)}=\omega_{n} L I_{o(n)}=2 \pi n f_{1} L I_{o(n)}
$$

or,

$$
I_{o(n)}=\frac{V_{s(n)}}{2 \pi n f_{1} L}=\frac{k V_{d}}{2 \pi n f_{1} L}
$$

where k is presented in Table 2.
from Table 2, $V_{s(n)}$ and $I_{o(n)}$ for different values of n is presented as follows

n	k	$V_{s(n)}$ $[\mathrm{V}]$	$I_{o(n)}$ $[\mathrm{A}]$	Comment
m_{f}	0.818	0	0	Unipolar modulation odd carrier multiples are zero.
$m_{f} \pm 2$	0.22	0	0	Unipolar modulation odd carrier multiples are zero.
$2 m_{f}-5$	0.013	5.32	0.05	
$2 m_{f}-3$	0.139	56.87	0.46	
$2 m_{f}-1$	0.314	128.46	1	
$2 m_{f}+1$	0.314	128.46	0.95	
$2 m_{f}+3$	0.139	56.87	0.42	
$2 m_{f}+5$	0.013	5.32	0.04	
$3 m_{f}$	0.818	0	0	Unipolar modulation odd carrier multiples are zero.
$3 m_{f} \pm 2$	0.22	0	0	Unipolar modulation odd carrier multiples are zero.
$4 m_{f}-5$	0.084	34.35	0.14	
$4 m_{f}-3$	0.115	47.05	0.19	
$4 m_{f}-1$	0.105	43	0.18	
$4 m_{f}+1$	0.105	43	0.18	
$4 m_{f}+3$	0.115	47.05	0.17	
$4 m_{f}+5$	0.084	34.35	0.12	
$\sqrt{\sum_{n} I_{o(n)}^{2}}$				
4 A				

The peak ripple current is about $1 \sqrt{2}=1.414 \mathrm{~A}$ at $2050 \mathrm{~Hz}\left(2 m_{f}-1\right)$.
The total RMS ripple current is 4 A .

Power MOSFET

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- $175{ }^{\circ} \mathrm{C}$ Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Lead (Pb)-free Available

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W . The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry

ORDERING INFORMATION

Package	TO-220
Lead (Pb)-free	IRF540PbF
	SiHF540-E3
SnPb	IRF540
	SiHF540

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			$\mathrm{V}_{\text {DS }}$	100	V
Gate-Source Voltage			V_{GS}	± 20	
Continuous Drain Current	V_{GS} at 10 V	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	28	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		20	
Pulsed Drain Current ${ }^{\text {a }}$			I_{DM}	110	
Linear Derating Factor				1.0	W/ ${ }^{\circ} \mathrm{C}$
Single Pulse Avalanche Energy ${ }^{\text {b }}$			$\mathrm{E}_{\text {AS }}$	230	mJ
Repetitive Avalanche Current ${ }^{\text {a }}$			$\mathrm{I}_{\text {AR }}$	28	A
Repetitive Avalanche Energy ${ }^{\text {a }}$			$\mathrm{E}_{\text {AR }}$	15	mJ
Maximum Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		PD	150	W
Peak Diode Recovery dV/dtc			dV/dt	5.5	V/ns
Operating Junction and Storage Temperature Range			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$
Soldering Recommendations (Peak Temperature)	for 10 s			$300{ }^{\text {d }}$	
Mounting Torque	6-32 or M3 screw			10	$\mathrm{lbf} \cdot \mathrm{in}$
				1.1	$\mathrm{N} \cdot \mathrm{m}$

otes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. $V_{D D}=25 \mathrm{~V}$, starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=440 \mu \mathrm{H}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=28 \mathrm{~A}$ (see fig. 12).
c. $I_{\mathrm{SD}} \leq 28 \mathrm{~A}, \mathrm{dl} / \mathrm{dt} \leq 170 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DS}}, \mathrm{T}_{\mathrm{J}} \leq 175^{\circ} \mathrm{C}$.
d. 1.6 mm from case

* Pb containing terminations are not RoHS compliant, exemptions may apply

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	$\mathrm{R}_{\text {thJA }}$	-	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Case-to-Sink, Flat, Greased Surface	$\mathrm{R}_{\text {thcs }}$	0.50	-	
Maximum Junction-to-Case (Drain)	$\mathrm{R}_{\text {thJC }}$	-	1.0	

SPECIFICATIONS $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V_{DS}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		100	-	-	V
V_{DS} Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{DS}} / \mathrm{T}_{\mathrm{J}}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		-	0.13	-	V/ ${ }^{\circ} \mathrm{C}$
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		2.0	-	4.0	V
Gate-Source Leakage	IGss	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		-	-	± 100	nA
Zero Gate Voltage Drain Current	Idss	$\mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		-	-	25	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150{ }^{\circ} \mathrm{C}$		-	-	250	
Drain-Source On-State Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=17 \mathrm{~A}^{\mathrm{b}}$	-	-	0.077	Ω
Forward Transconductance	g_{fs}	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=17 \mathrm{Ab}$		8.7	-	-	S
Dynamic							
Input Capacitance Output Capacitance		$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \\ \mathrm{f}=1.0 \mathrm{MHz}, \text { see fig. } 5 \end{gathered}$		-	1700	-	pF
	$\mathrm{C}_{\text {oss }}$			-	560	-	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			-	120	-	
Total Gate Charge	Q_{g}	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\begin{gathered} I_{D}=17 \mathrm{~A}, V_{D S}=80 \mathrm{~V}, \\ \text { see fig. } 6 \text { and } 13^{b} \end{gathered}$	-	-	72	nC
Gate-Source Charge	Q_{gs}			-	-	11	
Gate-Drain Charge	Q_{gd}			-	-	32	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} V_{D D}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=17 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=9.1 \Omega, R_{D}=2.9 \Omega \text {, see fig. } 10^{\mathrm{b}} \end{gathered}$		-	11	-	ns
Rise Time	t_{r}			-	44		
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$			-	53	-	
Fall Time	t_{f}			-	43	-	
Internal Drain Inductance	L_{D}	Between lead, 6 mm (0.25 ") from package and center of die contact		-	4.5	-	nH
Internal Source Inductance	Ls			-	7.5	-	
Drain-Source Body Diode Characteristics							
Continuous Source-Drain Diode Current	I_{s}	MOSFET symbol showing the integral reverse p - n junction diode		-	-	28	A
Pulsed Diode Forward Current ${ }^{\text {a }}$	ISM			-	-	110	
Body Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=28 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}^{\mathrm{b}}$		-	-	2.5	V
Body Diode Reverse Recovery Time	t_{rr}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=17 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}^{\mathrm{b}}$		-	180	360	ns
Body Diode Reverse Recovery Charge	$\mathrm{Q}_{\text {rr }}$			-	1.3	2.8	$\mu \mathrm{C}$
Forward Turn-On Time	$\mathrm{t}_{\text {on }}$	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and L_{D})					
Notes Repetitive rating; pulse width limited by Pulse width $\leq 300 \mu$ s; duty cycle $\leq 2 \%$.	imum junctio	emperature (see	11).				

