Examination TSTE25

Date: Time: Tentajour: Permitted aids: A sheet of paper with formulae and a scientific calculator.

Exercise 1. A power transmission company has been tasked with building a 600 kV 5000 MW HVDC link between Stavanger, Norway to Fraserburgh, Scotland. A key component in the HVDC link is the power converter. What is the type and rating of semiconductor switches should they consider for the converter? Motivate. (2 point)

Exercise 2. Consider all components to be ideal in a step-down converter used in a small portable PV phone charger and let the average output voltage (V_o) be held constant at 5 V. If input voltage (V_i) is 10-40 V, output power, $P_o \ge 15$ W, and switching frequency, $f_s = 50$ kHz, calculate the following:

a) The switch duty ratio (D) that is required to maintain the average output voltage of 5 V. (1 point)

- b) The minimum inductance (L) required to keep the converter operation in a continuous-conduction mode under all conditions. (4 point)
- c) The minimum capacitance (C) required to keep the output peak-to-peak ripple to be 10% of the average output voltage. (2 point)
- d) The minimum efficiency of the DC-DC converter. IRF540 MOSFETs are employed (datasheet found at the end of the document) and the voltage and current switching transient times are (4 point)

 $t_{ri} = 19 \text{ ns},$ $t_{fv} = 34 \text{ ns},$ $t_{rv} = 12 \text{ ns},$ $t_{fi} = 16 \text{ ns}.$

Exercise 3. Consider all components to be ideal in a step-up converter used in a power management system in a vehicle and let the average output voltage (V_o) be held constant at 5 V. If battery voltage on the input side (V_i) is 2.9-4.2 V, $P_o \ge 200$ W, and due to cost limitations, the only available passive components are an inductor, $L = 10 \,\mu\text{H}$, and several capacitors of $100 \,\mu\text{F}$. Calculate the following:

- a) The switch duty ratio (D) that is required to maintain the average output voltage of 5V. (1 point)
- b) The minimum switching frequency (f_s) required to keep the battery current peak-to-peak ripple below 10% of the average battery current. (4 point)
- c) The minimum number of capacitors required to keep the output peak-to-peak voltage ripple below 10% of the average output voltage. (3 point)

Exercise 4. For a half-bridge inverter, assuming all ideal components, the output waveforms are presented in Figure 1, where

peak inverter side voltage	$\hat{v}_s = 12 \mathrm{V},$
peak inverter side voltage (fundamental)	$\hat{v}_{s(1)} = 9.61 \mathrm{V},$
peak output current	$\hat{i}_{out} = 40.1 \mathrm{A},$
peak output voltage	$\hat{v}_{out} = 11 \mathrm{V},$
peak output voltage (fundamental)	$\hat{v}_{out(1)} = 8.37 \mathrm{V}.$

Determine:

a)	The switching frequency used	(2 point)
b)	The inductance	(3 point)
c)	The peak fundamental current	(2 point)
d)	The pole-to-pole DC-link voltage (V_d) and modulation index (m_a)	(2 point)
e)	The active power on the load at the fundamental frequency.	(1 point)
f)	The phase angle of the fundamental current with respect to the inverter side voltage.	(2 point)
g)	The active and reactive power on the converter at the fundamental frequency.	(2 point)

Figur 1: half-bridge inverter output waveforms.

Exercise 5. Consider the switched step-down converter shown in Figure 2. The drain current of the MOSFET as a function through one complete turn-on and turn-off sequence is shown in Figure 2. The switch (S_W) and diode (D_f) data are provided in Table 1.

Figur 2: Switched step-down converter and drain current transients.

S_W	data	D_f	data
$V_{ds(\max)}$	$700\mathrm{V}$	V_{rm}	$800\mathrm{V}$
$I_{d(\max)}$	$400\mathrm{V}$	$I_{\rm max}$	$400\mathrm{A}$
$T_{j(\max)}$	$150^{\circ}\mathrm{C}$	$T_{j(\max)}$	$150^{\circ}\mathrm{C}$
$R_{\theta(ja)}$	$0.1^{\circ}\mathrm{C/W}$	$R_{\theta(ja)}$	$1^{\circ}C/W$
R_{on}	0.01Ω	R_{on}	0.1Ω
		V_{on}	$0.7\mathrm{V}$

Tabell 1: switch (S_W) and diode (D_f) data.

- a) Sketch and dimension the drain-source voltage of S_W as a function of time. Assume that the voltage across the switch can change instantaneously and is only limited by the external circuit. (4 point)
- b) Sketch and dimension the diode voltage as a function of time.

(3 point)

- c) Are either the diode or the switch overstressed with respect to voltage? If so, specify by how much. (2 point)
- d) Determine the junction temperature of the switch and the diode. Do not forget the losses during the switching transients, the diode reverse recovery, a duty cycle of 90%, and assuming a switching frequency of 10 kHz at an ambient temperature of 25° C. (6 point)

Exercise 6. Consider the problem of ripple in the output current of a single-phase full-bridge inverter. Assume $V_{o(1)} = 200$ V and $I_{o(1)} = 10$ A at a frequency of 50 Hz and an induction motor load with inductance of L = 10 mH. Calculate the peak value of the inverter ripple current if the converter is operating in a sinusoidal unipolar PWM mode, with $m_f = 21$ and $m_a = 0.8$. (8 point)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Fundamental mf 1.242 1.15 1.006 0.818 0.602 $m_f \pm 2$ 0.061 0.061 0.131 0.22 0.318 $m_f \pm 4$ 0.061 0.131 0.22 0.318 $2m_f \pm 4$ 0.018 0.018 0.018 $2m_f \pm 1$ 0.19 0.326 0.37 0.314 0.181 $2m_f \pm 3$ 0.024 0.071 0.139 0.212 $2m_f \pm 5$ 0.013 0.033 0.033	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L
$2m_s + 5$ 0.013 0.035	2
	3
$3m_f$ 0.335 0.123 0.083 0.171 0.133	3
$3m_f \pm 2$ 0.044 0.139 0.203 0.176 0.062	2
$3m_f \pm 4$ 0.012 0.047 0.104 0.157	7
$3m_f \pm 6$ 0.016 0.044	1
$4m_f \pm 1$ 0.163 0.157 0.088 0.105 0.068	3
$4m_f \pm 3$ 0.012 0.070 0.132 0.115 0.009)
$4m_f \pm 5$ 0.034 0.084 0.119)
$4m_f \pm 7$ 0.017 0.05	

Tabell 2: Generalized harmonics of a half-bridge inverter output voltage for a large m_f .

Note: output voltage (\hat{V}_o) is $\hat{V}_o = m_a V_d/2$.

Configuration

TO-220

IRF540, SiHF540

Vishay Siliconix

RoHS'

Power MOSFET

PRODUCT SUMM	ARY				
V _{DS} (V)	10	00			
R _{DS(on)} (Ω)	V _{GS} = 10 V	0.077			
Q _g (Max.) (nC)	7.	2			
Q _{gs} (nC)	1	1			
Q _{ad} (nC)	3	32			

Single

D

s

N-Channel MOSFET

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- 175 °C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- · Lead (Pb)-free Available

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION	
Package	TO-220
Load (Ph) free	IRF540PbF
Lead (PD)-free	SiHF540-E3
SaDh	IRF540
	SiHF540

ABSOLUTE MAXIMUM RATINGS $T_C = 25 ^{\circ}C$, unless otherwise noted						
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V _{DS}	100	V	
Gate-Source Voltage			V _{GS}	± 20	v	
Continuous Drain Current	Vec at 10 V	T _C = 25 °C		28		
Continuous Drain Current	V _{GS} at 10 V	$T_C = 100 \ ^\circ C$	ıD	20	А	
Pulsed Drain Current ^a			I _{DM}	110		
Linear Derating Factor				1.0	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	230	mJ	
Repetitive Avalanche Currenta			I _{AR}	28	A	
Repetitive Avalanche Energy ^a			E _{AR}	15	mJ	
Maximum Power Dissipation $T_{C} = 25 \text{ °C}$			PD	150	W	
Peak Diode Recovery dV/dtc			dV/dt	5.5	V/ns	
Operating Junction and Storage Temperature Range			TJ, Tstg	- 55 to + 175		
Soldering Recommendations (Peak Temperature) for 10 s				300 ^d	U U	
Mounting Torque	6-32 or M3 screw			10	lbf · in	
wounting rorque				1.1	N · m	

Notes

A Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. V_{DD} = 25 V, starting T_J = 25 °C, L = 440 μ H, R_G = 25 Ω , I_{AS} = 28 A (see fig. 12). c. I_{SD} ≤ 28 A, dl/dt ≤ 170 A/ μ s, V_{DD} ≤ V_{DS}, T_J ≤ 175 °C. d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91021 S-81240-Rev. A, 16-Jun-08

www.vishay.com

IRF540, SiHF540

Vishay Siliconix

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient	R _{thJA}		62		
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-	1.0		

SPECIFICATIONS $T_J = 25 \ ^{\circ}C$,	unless otherw	vise noted		1	1	1	1
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0$	$V_{GS} = 0 V, I_D = 250 \mu A$		-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_J$	Reference	to 25 °C, I _D = 1 mA	-	0.13	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V$	/ _{GS} , I _D = 250 μA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}	Vo	_{as} = ± 20 V	-	-	± 100	nA
Zaro Gata Valtago Drain Current	1	V _{DS} = 1	00 V, V _{GS} = 0 V	-	-	25	
Zero Gale Voltage Drain Current	DSS	V _{DS} = 80 V, V	′ _{GS} = 0 V, T _J = 150 °C	-	-	250	μΑ
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 17 A ^b	-	-	0.077	Ω
Forward Transconductance	9 _{fs}	V _{DS} = 5	50 V, I _D = 17 A ^b	8.7	-	-	S
Dynamic							
Input Capacitance	Ciss	\ \	/ _{GS} = 0 V,	-	1700	-	
Output Capacitance	Coss	v	_{DS} = 25 V,	-	560	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1.0	MHz, see fig. 5	-	120	-	
Total Gate Charge	Qg			-	-	72	nC
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$I_{\rm D} = 17$ A, $V_{\rm DS} = 80$ V,	-	-	11	
Gate-Drain Charge	Q _{gd}	-	see lig. 6 and 15	-	-	32	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 17 \text{ A}$ $\text{R}_{G} = 9.1 \ \Omega, \text{ R}_{D} = 2.9 \ \Omega, \text{ see fig. } 10^{b}$		-	11	-	- ns
Rise Time	tr			-	44	-	
Turn-Off Delay Time	t _{d(off)}			-	53	-	
Fall Time	t _f			-	43	-	
Internal Drain Inductance	LD	Between lead, 6 mm (0.25") from package and center of die contact		-	4.5	-	
Internal Source Inductance	L _S			-	7.5	-	
Drain-Source Body Diode Characteristic	s	-			•	•	
Continuous Source-Drain Diode Current	Is	MOSFET symbol showing the integral reverse p - n junction diode		-	-	28	
Pulsed Diode Forward Current ^a	I _{SM}			-	-	110	A
Body Diode Voltage	V _{SD}	T _J = 25 °C,	_S = 28 A, V _{GS} = 0 V ^b	-	-	2.5	V
Body Diode Reverse Recovery Time	t _{rr}	T = 25 °C 1	17 A dl/dt - 100 A/uch	-	180	360	ns
Body Diode Reverse Recovery Charge	Q _{rr}	- 1J=20 0, IF=	π A, ui/ut = 100 A/µs ^o	-	1.3	2.8	μC
Forward Turn-On Time	t _{on}	Intrinsic turn	on time is negligible (turr	I-on is dor	ninated b	y L _S and	L _D)

 Notes

 a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

 b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %.

www.vishay.com 2

Document Number: 91021 S-81240-Rev. A, 16-Jun-08