1. You probably figured this one out :)
2. $1 \mathrm{~kW}, 100 \mathrm{~V}$ output step-up converter is to be evaluated. Consider all the components to be ideal. The input voltage is $\mathrm{Vd}=48 \mathrm{~V}$, and the switching frequency is $f_{\mathrm{sw}}=80 \mathrm{kHz}$
(a) Calculate the output capacitor C when the output voltage peak-to-peak ripple is 5% of the output voltage $V_{o}=100 \mathrm{~V}$.
The duty cycle (D) is given by

$$
D=1-\frac{V_{\mathrm{d}}}{V_{\mathrm{o}}}=1-\frac{48}{100}=\mathbf{0 . 5 2}
$$

The input current $\left(I_{\mathrm{d}}\right)$ is

$$
I_{\mathrm{d}}=\frac{P}{V_{\mathrm{d}}}=\frac{1000}{48}=\mathbf{2 0 . 8 3} \mathbf{A}
$$

Since all the components are assumed to be ideal, the input and output powers are identical. Therefore, the output current $\left(I_{\mathrm{o}}\right)$ is

$$
I_{\mathrm{o}}=\frac{P}{V_{o}}=\frac{1000}{100}=10 \mathrm{~A}
$$

the output capacitor (C) when the output voltage peak-to-peak ripple is 5% of the output voltage $V_{\mathrm{o}}=100 \mathrm{~V}$ is

$$
C=\frac{I_{\mathrm{o}} D}{\Delta V_{\mathrm{o}} f_{\mathrm{sw}}}=\frac{10 \times 0.52}{0.05 \times 100 \times 80 \times 10^{3}}=\mathbf{1 3} \mu \mathbf{F}
$$

(b) Consider filter inductance $L=40 \mu \mathrm{H}$, calculate $I_{\mathrm{L} \text { (peak) }}$. Is the converter in continuous conduction mode?
The peak-to-peak ripple input (or inductor) current is

$$
\Delta I_{d}=\frac{D V_{\mathrm{o}}}{L f_{\mathrm{sw}}}(1-D)=\frac{0.52 \times 100}{40 \times 10^{-6} \times 80 \times 10^{3}} \times(1-0.52)=7.8 \mathbf{A}
$$

The maximum and minimum values of the inductor current ($I_{\mathrm{d}}^{\max }$ and $I_{\mathrm{d}}^{\min }$, respectively) are

$$
\begin{aligned}
I_{\mathrm{d}}^{\max } & =I_{\mathrm{d}}+\frac{\delta I_{\mathrm{d}}}{2}=24.73 \mathrm{~A} \\
I_{\mathrm{d}}^{\min } & =I_{\mathrm{d}}-\frac{\delta I_{\mathrm{d}}}{2}=16.93 \mathrm{~A}
\end{aligned}
$$

Since, $I_{\mathrm{d}}^{\min }>0$, the converter is in continuous conduction mode.
(c) Consider filter inductance $L=6 \mu \mathbf{H}$, calculate $I_{\mathrm{L}(\text { peak) }}$. Is the converter in continuous conduction mode?
The peak-to-peak ripple input (or inductor) current is

$$
\Delta I_{d}=\frac{D V_{\mathrm{o}}}{L f_{\mathrm{sw}}}(1-D)=\frac{0.52 \times 100}{6 \times 10^{-6} \times 80 \times 10^{3}} \times(1-0.52)=\mathbf{5 2} \mathbf{A}
$$

The maximum and minimum values of the inductor current ($I_{\mathrm{d}}^{\max }$ and $I_{\mathrm{d}}^{\min }$, respectively) are

$$
\begin{aligned}
& I_{\mathrm{d}}^{\max }=I_{\mathrm{d}}+\frac{\delta I_{\mathrm{d}}}{2}=46.83 \mathrm{~A} \\
& I_{\mathrm{d}}^{\min }=I_{\mathrm{d}}-\frac{\delta I_{\mathrm{d}}}{2}=-5.17 \mathrm{~A}
\end{aligned}
$$

Since, $I_{\mathrm{d}}^{\min }<0$, the converter is not in continuous conduction mode.
(d) Determine the conduction losses of the MOSFET if the on-state resistance of the MOSFET is $1 \mathrm{~m} \Omega$.
The conduction losses of the MOSFET is

$$
P_{\mathrm{mos}}^{l}=D I_{\mathrm{d}}^{2} R_{\mathrm{ds}(\mathrm{on})}=0.52 \times(20.83)^{2} \times 1 \times 10^{-3}=\mathbf{0 . 2 3} \mathrm{W}
$$

3. An n-channel power MOSFET, IPD023N04NF2S by Infineon, is to be used in a step-down converter (datasheet is attached). The MOSFET conducts an RMS current of 100 A . The switching frequency is 10 kHz , the duty cycle (D) is 0.75 and the input voltage of the converter is 20 V .
(a) Calculate the total MOSFET power losses (assume the same time for voltage and current transients, i.e., $t_{\mathbf{r i}}=t_{\mathrm{fv}}=t_{\mathrm{r}}$ and $t_{\mathrm{fi}}=t_{\mathrm{rv}}=t_{\mathrm{f}}$).
From the MOSFET datasheets, the on-state resistance of the MOSFET ($\left.r_{d s(\mathrm{on})}\right)$ and the switching transient times are

$$
r_{d s(\mathrm{on})}=2.3 \mathrm{~m} \Omega \quad t_{r i}=t_{f v}=15 \mathrm{~ns}, \quad t_{r v}=t_{f i}=15 \mathrm{~ns}
$$

The conduction losses of the MOSFET $\left(P_{c}^{l}\right)$ is

$$
P_{c}^{l}=D I_{\mathrm{mos}}^{2} r_{d s(\mathrm{on})}=0.5 \times 100^{2} \times 2.3 \times 10^{-3}=11.5 \mathbf{W} .
$$

In the DC-DC converter the peak MOSFET current ($\hat{I}_{\text {mos }}$) is

$$
\hat{I}_{\mathrm{mos}}=\frac{I_{\mathrm{mos}}}{D}=\frac{100}{0.75}=\mathbf{1 3 3 . 3 3} \mathbf{A}
$$

The switching losses of the MOSFET $\left(P_{s}^{l}\right)$ is

$$
\begin{aligned}
P_{s}^{l} & =\frac{1}{2} V_{\mathrm{d}} \hat{I}_{\mathrm{mos}} t_{\mathrm{sw}} f_{\mathrm{sw}}=\frac{1}{2} V_{\mathrm{d}} \hat{I}_{\mathrm{mos}}\left(t_{r i}+t_{f v}+t_{r v}+t_{f i}\right) f_{\mathrm{sw}} \\
& =\frac{1}{2} \times 20 \times 133.33 \times\left(2 \times 15 \times 10^{-9}+2 \times 15 \times 10^{-9}\right) \times 10 \times 10^{3}=\mathbf{8 0} \mathbf{~ m W}
\end{aligned}
$$

The total losses in the MOSET $\left(P^{l}\right)$ is

$$
P^{l}=P_{c}^{l}+P_{s}^{l}=11.5+0.08=11.58 \mathbf{W}
$$

(b) If the internal junction temperature is not to exceed $100^{\circ} \mathrm{C}$ and the maximum ambient temperature is $35^{\circ} \mathrm{C}$, specify the thermal resistance of the required heat sink.
The thermal resistance of the required heat sink is

$$
\begin{aligned}
\Delta T_{\mathrm{ja}} & =P^{l}\left(R_{\theta \mathrm{jc}}+R_{\theta \mathrm{ca}}\right) \Longrightarrow R_{\theta \mathrm{ca}}=\frac{\Delta T_{\mathrm{ja}}}{P^{l}}-R_{\theta \mathrm{jc}} \\
\Longrightarrow R_{\theta \mathrm{ca}} & =\frac{100-35}{11.5}-1=4.61 \mathrm{~K} / \mathbf{W}
\end{aligned}
$$

(c) Determine the peak MOSFET drain-to-source voltage during the turn-off transient if the parasitic inductance between the input voltage source and the MOSFET drain-terminal is 3 nH .
The voltage across the MOSFET during the turn-off transient is

$$
V_{\mathrm{ds}}^{\max }=V_{\mathrm{d}}-L \frac{d V_{\mathrm{ds}}}{d t}=20-3 \times 10^{-9} \times \frac{0-100}{15 \times 10^{-9}}=40 \mathrm{~V}
$$

StrongIRFET ${ }^{\text {TM }} 2$ Power-Transistor

 IPD023N04NF2S1 Maximum ratings
at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Table 2 Maximum ratings

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Continuous drain current ${ }^{1)}$	ID	-	-	$\begin{array}{\|l} 143 \\ 110 \\ 27 \end{array}$	A	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, T_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \left.R_{\text {THJA }}=50^{\circ} \mathrm{C} / \mathrm{W}^{2}\right) \end{aligned}$
Pulsed drain current ${ }^{3)}$	$l_{\text {d,pulse }}$	-	-	572	A	$T_{\text {A }}=25^{\circ} \mathrm{C}$
Avalanche energy, single pulse ${ }^{4}$	$E_{\text {AS }}$	-	-	167	mJ	$\mathrm{I}_{\mathrm{D}}=70 \mathrm{~A}, R_{\mathrm{GS}}=25 \Omega$
Gate source voltage	$V_{\text {GS }}$	-20	-	20	V	-
Power dissipation	$P_{\text {tot }}$		-	$\begin{array}{\|l\|} \hline 150 \\ 3.0 \end{array}$	W	$\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C}, R_{\text {THJA }}=50^{\circ} \mathrm{C} / \mathrm{W}^{2)} \end{aligned}$
Operating and storage temperature	$T_{\mathrm{j},}, T_{\text {stg }}$	-55	-	175	${ }^{\circ} \mathrm{C}$	-

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Thermal resistance, junction - case	$R_{\text {thJc }}$	-	-	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-
Thermal resistance, junction - ambient, $6 \mathrm{~cm}^{2}$ cooling area	$R_{\text {thJA }}$	-	-	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-
Thermal resistance, junction - ambient, minimal footprint	$R_{\text {thJA }}$	-	-	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-

[^0]
StrongIRFET ${ }^{\text {TM }} 2$ Power-Transistor

 IPD023N04NF2S
3 Electrical characteristics

at $T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified

Table 4 Static characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Drain-source breakdown voltage	$V_{\text {(BR)DSS }}$	40	-	-	V	$V_{G S}=0 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$
Gate threshold voltage	$V_{\mathrm{GS} \text { (th) }}$	2.2	2.8	3.4	V	$V_{\text {DS }}=V_{G S}, I_{\text {d }}=81 \mu \mathrm{~A}$
Zero gate voltage drain current	Idss		$\begin{aligned} & 0.1 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{DS}}=40 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{DS}}=40 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$
Gate-source leakage current	Igss	-	10	100	nA	$V_{G S}=20 \mathrm{~V}, V_{\text {DS }}=0 \mathrm{~V}$
Drain-source on-state resistance	$\mathrm{R}_{\mathrm{DS}(\text { on) }}$		$\begin{aligned} & 1.9 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.1 \end{aligned}$	$\mathrm{m} \Omega$	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=70 \mathrm{~A} \\ & V_{G S}=6 \mathrm{~V}, I_{D}=35 \mathrm{~A} \end{aligned}$
Gate resistance	R_{G}	-	3.0	-	Ω	-
Transconductance ${ }^{1)}$	$g_{\text {fs }}$	125	-	-	S	$\left\|V_{\mathrm{DS}}\right\| \geq 2\left\|/_{\mathrm{D}}\right\| R_{\text {DS }}$ (on)max, $I_{\mathrm{D}}=70 \mathrm{~A}$

Table 5 Dynamic characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Input capacitance	$C_{\text {iss }}$	-	4800	-	pF	$V_{G S}=0 \mathrm{~V}, V_{\text {DS }}=20 \mathrm{~V}, f=1 \mathrm{MHz}$
Output capacitance	Coss	-	1800	-	pF	$V_{G S}=0 \mathrm{~V}, V_{\text {DS }}=20 \mathrm{~V}, f=1 \mathrm{MHz}$
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$	-	98	-	pF	$V_{G S}=0 \mathrm{~V}, V_{\text {DS }}=20 \mathrm{~V}, f=1 \mathrm{MHz}$
Turn-on delay time	$t_{\text {d(on) }}$	-	16	-	ns	$\begin{aligned} & V_{D D}=20 \mathrm{~V}, V_{G S}=10 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, \\ & R_{\mathrm{G}, \mathrm{ext}}=1.6 \Omega \end{aligned}$
Rise time	t_{r}	-	15	-	ns	$\begin{aligned} & V_{\mathrm{DD}}=20 \mathrm{~V}, V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, \\ & R_{\mathrm{G}, \mathrm{ext}}=1.6 \Omega \end{aligned}$
Turn-off delay time	$t_{\text {d(off) }}$	-	35	-	ns	$\begin{aligned} & V_{\mathrm{DD}}=20 \mathrm{~V}, V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, \\ & R_{\mathrm{G}, \mathrm{ext}}=1.6 \Omega \end{aligned}$
Fall time	t_{f}	-	15	-	ns	$\begin{aligned} & V_{\mathrm{DD}}=20 \mathrm{~V}, V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, \\ & R_{\mathrm{G}, \mathrm{ext}}=1.6 \Omega \end{aligned}$

Table 6 Gate charge characteristics ${ }^{2)}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Gate to source charge	Q_{gs}	-	21	-	nC	$V_{\mathrm{DD}}=20 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V
Gate charge at threshold	$Q_{\mathrm{g}(\mathrm{th})}$	-	13.5	-	nC	$V_{\mathrm{DD}}=20 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V
Gate to drain charge	Q_{gd}	-	13	-	nC	$V_{\mathrm{DD}}=20 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V
Switching charge	$Q_{\text {sw }}$	-	20	-	nC	$V_{\mathrm{DD}}=20 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V
Gate charge total ${ }^{1)}$	Q_{g}	-	68	102	nC	$V_{\mathrm{DD}}=20 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V
Gate plateau voltage	$V_{\text {plateau }}$	-	4.3	-	V	$V_{\mathrm{DD}}=20 \mathrm{~V}, I_{\mathrm{D}}=70 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V
Gate charge total, sync. FET	$Q_{\mathrm{g} \text { (sync) }}$	-	61	-	nC	$V_{\mathrm{DS}}=0.1 \mathrm{~V}, V_{\mathrm{GS}}=0$ to 10 V
Output charge	Qoss	-	76	-	nC	$V_{\text {DS }}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V}$

[^1]4. The output voltages and current of a single-phase full-bridge inverter are shown in Figure 1.

Figure 1: full-bridge inverter output waveforms.
(a) Type of modulation (unipolar or bipolar).

Bipolar modulation.
(b) Switching frequency

Counting the number of positive/negative pulses (or, rising/falling edges) for v_{s} in Figure 1, gives

$$
m_{f}=15 .
$$

Since m_{f} is defined as

$$
m_{f}=\frac{f_{s w}}{f_{1}} \quad \Longrightarrow f_{s w}=m_{f} f_{1},
$$

where f_{1} is the fundamental frequency, and from Figure 1

$$
f_{1}=\frac{1}{0.02 \mathrm{~s}}=50 \mathrm{~Hz}
$$

Therefore,

$$
f_{s w}=m_{f} f_{1}=15 \times 50=750 \mathrm{~Hz}
$$

(c) Inductance.

From Figure 1, during the time interval $t \in[0.005,0.006] \mathrm{s}$, the $v_{s}=600 \mathrm{~V}$ and for simplicity the voltage after the inductor $v_{\text {out }}$ is about 275 V . Then the voltage drop across the inductor is

$$
\begin{aligned}
V_{L} & =\left.\left(v_{\text {out }}(t)-v_{s}(t)\right)\right|_{t \in[0.005,0.006]}=\left.L \frac{d i(t)}{d t}\right|_{t \in[0.005,0.006]} \\
\Longrightarrow L & =\left.\frac{v_{\text {out }}(t)-v_{s}(t)}{\frac{d i}{d t}}\right|_{t \in[0.005,0.006]}
\end{aligned}
$$

$d t=0.006 \mathrm{~s}-0.005 \mathrm{~s}$, and from Figure 1, $d i=70 \mathrm{~A}-38 \mathrm{~A}=32 \mathrm{~A}$. Therefore the inductance, L is

$$
L=\frac{600-275}{\frac{32}{0.001}}=\mathbf{1 0 . 2} \mathbf{~ m H}
$$

(d) Peak fundamental current.

The peak fundamental output current occurs at $0.006 \mathrm{~s} \leq t \leq 0.007 \mathrm{~s}$. The average current in this interval is the peak Fundamental output current $\left(\hat{i}_{\text {out }(1)}\right)$

$$
\hat{i}_{\text {out }(1)}=\frac{45+75}{2}=\mathbf{6 0} \mathrm{A}
$$

(e) Pole-to-pole DC-link voltage (V_{d}) and modulation index (m_{a}).

In the full-bridge inverter, the pole-to-pole DC-link voltage $\left(V_{d}\right)$ is

$$
V_{d}=\hat{v}_{s}=600 \mathrm{~V}
$$

The modulation index $\left(m_{a}\right)$ is

$$
m_{a}=\frac{\hat{v}_{s(1)}}{V_{d}}=\frac{360}{600}=\mathbf{0 . 6} .
$$

(f) Active power on the load at the fundamental frequency.

The active power on the load ($P_{\text {out }}$) at the fundamental frequency is

$$
P_{\text {out }}=\frac{\hat{v}_{\text {out }(1)} \hat{i}_{\text {out }(1)}}{2}=\frac{300 \times 60}{2}=\mathbf{9} \mathrm{kW}
$$

(g) Phase angle of the fundamental current with respect to the inverter side voltage. At time $t=0 \mathrm{~s}$ the reference signal (fundamental converter output voltage) is 0 V thus the converter output voltage $\left(v_{s}\right)$ is also assumed to be 0 V . However, the fundamental load current (or voltage) is 0 A (or 0 V) at $t=0.0017 \mathrm{~s}$. The time delay (δt) is

$$
\delta t=0.0017 \mathrm{~s} .
$$

If time $t=T=0.02 \mathrm{~s}$ is 2π, then at time $t=\delta t$, the phase angle (ϕ) is

$$
\phi=\frac{\delta t}{T} 2 \pi=\frac{0.0017}{0.02} \times 2 \times \pi=\mathbf{3 0 . 6} .
$$

(h) Active and reactive power on the converter at the fundamental frequency.

The active power $\left(P_{s}\right)$ on the converter side is

$$
P_{s}=\frac{\hat{v}_{s(1)} \hat{i}_{\text {out }(1)}}{2} \cos (\phi)=\frac{360 \times 60}{2} \cos \left(30.6^{\circ}\right)=\mathbf{9 . 3} \mathbf{k W} .
$$

The reactive power $\left(Q_{s}\right)$ on the converter side is

$$
Q_{s}=\frac{\hat{v}_{s(1)} \hat{i}_{\text {out }(1)}}{2} \sin (\phi)=\frac{360 \times 60}{2} \sin \left(30.6^{\circ}\right)=\mathbf{5 . 5} \mathbf{k V a r} .
$$

5. For a full-bridge inverter with unipolar modulation, the RMS fundamental (at 150 Hz) output voltage and current are 1 kV and 180 A respectively. The inverter incorporates a filter inductor with inductance $100 \mu \mathrm{H}$ and it operates with a modulation index of 0.8 with a switching frequency of 10 kHz .

Table 1: Generalized harmonics of a half-bridge inverter output voltage for a large m_{f}.

$h \downarrow m_{a} \rightarrow$	0.2	0.4	0.6	0.8	1
1	0.2	0.4	0.6	0.8	1
Fundamental					
m_{f}	1.242	1.15	1.006	0.818	0.6023
$m_{f} \pm 2$	0.061	0.061	0.131	0.22	0.318
$m_{f} \pm 4$					0.018
$2 m_{f} \pm 1$	0.19	0.326	0.37	0.314	0.181
$2 m_{f} \pm 3$		0.024	0.071	0.139	0.212
$2 m_{f} \pm 5$				0.013	0.033
$3 m_{f}$	0.335	0.123	0.083	0.171	0.133
$3 m_{f} \pm 2$	0.044	0.139	0.203	0.176	0.062
$3 m_{f} \pm 4$		0.012	0.047	0.104	0.157
$3 m_{f} \pm 6$				0.016	0.044
$4 m_{f} \pm 1$	0.163	0.157	0.088	0.105	0.068
$4 m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4 m_{f} \pm 5$			0.034	0.084	0.119
$4 m_{f} \pm 7$				0.017	0.05

Note: output voltage (\hat{V}_{o}) is $\hat{V}_{o}=m_{a} V_{d} / 2$.

Note: Ripple here is referred to as distortion, which is the alteration of the original shape of a signal. Here ripple means the alteration of the waveform from an ideal sinusoidal signal.
(a) Determine the dc-link voltage of the inverter

The equivalent circuit at the fundamental frequency is given as

The peak fundamental converter voltage $\left(V_{s(1)}\right)$ is determined using KVL, i.e.,

$$
V_{s(1)}=V_{o(1)}+I_{o(1)} \omega_{1} L=1000-180 \times 2 \times \pi \times 150 \times 100 \times-6=1094.2 \mathrm{~V}
$$

The peak fundamental converter output votlage $\left(\hat{V}_{s(1)}\right)$ is

$$
\hat{V}_{s(1)}=\sqrt{2} V_{s(1)}=\sqrt{2} \times 1094.2=\mathbf{1 5 4 7 . 4} \mathbf{V}
$$

The DC-link voltage is calculated as

$$
V_{\mathrm{d}}=\frac{\hat{V}_{s(1)}}{m_{a}}=\frac{1547.5}{0.8}=\mathbf{1 9 3 4 . 4} \mathrm{V}
$$

(b) Calculate the magnitude (in RMS) and frequency of the largest component of the output current for a modulation index of 0.8 . Assume that the magnitude of all the other components of the output voltage is zero.
The equivalent circuit at the $n^{\text {th }}$ harmonic, where $n \neq 1$ is

The RMS output output voltage at the $n^{\text {th }}$ harmonic $\left(V_{o(n)}\right)$ is

$$
\begin{equation*}
V_{o(n)}=V_{s(n)}-I \omega_{n} L \tag{1}
\end{equation*}
$$

From Table 1, the highest harmonic component for uni-polar modulation is at $2 m_{f} \pm 1$, i.e.,

$$
V_{s\left(2 m_{f} \pm 1\right)}=0.314 \frac{V_{\mathrm{d}}}{\sqrt{2}}=0.314 \times \frac{1934.4}{\sqrt{2}}=429.5 \mathrm{~V}
$$

and

$$
m_{f}=\frac{f_{\mathrm{sw}}}{f_{1}}=\frac{10 \times 10^{3}}{150}=\mathbf{6 6 . 6 7}
$$

The output current at the $n^{t h}$ harmonic $\left(I_{o(n)}\right)$, from (1) is

$$
I_{o(n)}=\frac{V_{s(n)}-V_{o(n)}}{\omega_{n} L}=\frac{429.5-0}{2 \pi \times(n) \times 150 \times 1 \times 100^{-6}}
$$

. Substituting, $n=2 m_{f} \pm 1$,

$$
I_{o\left(2 m_{f}+1\right)}=33.92 \mathrm{~A}, \quad \text { and, } I_{o\left(2 m_{f}-1\right)}=34.44 \mathrm{~A} .
$$

The highest harmonic component of the output current occurs at $2 m_{f}-1$, i.e., at $\mathbf{1 9 . 8 5} \mathbf{~ k H z}$ with a magnitude of $\mathbf{3 4 . 4 4} \mathbf{A}$.

[^0]: ${ }^{1)}$ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature as specified. For other case temperatures please refer to Diagram 2. De-rating will be required based on the actual environmental conditions
 ${ }^{2)}$ Device on $40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical in still air
 ${ }^{3}$) See Diagram 3 for more detailed information
 ${ }^{4}$) See Diagram 13 for more detailed information

[^1]: ${ }^{1)}$ Defined by design. Not subject to production test.
 ${ }^{2)}$ See "Gate charge waveforms" for parameter definition

