1. You probably figured this one out :)
2. The switched dc-dc step-down converter shown in Figure 1 controls a dc machine with an armature inductance $L_{\mathrm{a}}=0.2 \mathrm{mH}$. The armature resistance can be neglected. The armature current i_{o} is 5 A . The switching frequency $f_{\text {sw }}=30 \mathrm{kHz}$ and the duty cycle, $D=0.8$. Consider all the components to be ideal.

Figure 1: Step-down DC-DC converter.
(a) The output voltage, $V_{o}=200 \mathrm{~V}$. Calculate the input voltage, V_{d}.

The duty cycle is given by

$$
D=\frac{V_{\mathrm{o}}}{V_{\mathrm{d}}}
$$

The input voltage is

$$
V_{\mathrm{d}}=\frac{V_{\mathrm{o}}}{D}=\frac{200}{0.8}=250 \mathrm{~V}
$$

(b) Find the ripple in the armature current.

The peak-to-peak armature (iunductor) current ripple $\left(\Delta I_{\mathrm{a}}\right)$ is

$$
\Delta I_{\mathrm{a}}=\frac{D}{L f_{\mathrm{sw}}}\left(V_{\mathrm{d}}-V_{\mathrm{o}}\right)=\frac{0.8}{200 \times 10^{-6} \times 30 \times 10^{3}}(250-200)=6.67 \mathrm{~A}
$$

(c) Calculate the maximum and the minimum value of the armature current.

The average armature current $I_{\mathrm{a}}=5 \mathrm{~A}$. The peak armature current ripple δI_{a} is

$$
\delta I_{\mathrm{a}}=\frac{\Delta I_{\mathrm{a}}}{2}=3.33 \mathrm{~A}
$$

The maximum and minimum values of the armature current ($I_{\mathrm{a}}^{\max }$ and $I_{\mathrm{a}}^{\min }$, respectively) are

$$
\begin{aligned}
I_{\mathrm{a}}^{\max } & =I_{\mathrm{a}}+\delta I_{\mathrm{a}}=8.33 \mathrm{~A} \\
I_{\mathrm{a}}^{\min } & =I_{\mathrm{a}}-\delta I_{\mathrm{a}}
\end{aligned}=1.67 \mathrm{~A}
$$

(d) The load on the machine is reduced. Calculate I_{a} when the converter is on the boundary between continuous and discontinuous mode.
The peak-to-peak armature (iunductor) current ripple (ΔI_{a}) is

$$
\Delta I_{\mathrm{a}}=\frac{D}{L f_{\mathrm{sw}}}\left(V_{\mathrm{d}}-V_{\mathrm{o}}\right)=\frac{D}{L f_{\mathrm{sw}}}\left(V_{\mathrm{d}}-D V_{\mathrm{d}}\right)=\frac{D(1-D)}{L f_{\mathrm{sw}}} V_{\mathrm{d}}
$$

From the above equation, it is clear that ΔI_{a} is maximum when $D=0.5$. Therefore, The armature current ripple when the converter is on the boundary between continuous and discontinuous mode $\left(\Delta I_{\mathrm{a}}^{\mathrm{B}}\right)$ is

$$
\Delta I_{\mathrm{a}}^{\mathrm{B}}=\frac{V_{\mathrm{d}}}{4 L f_{\mathrm{sw}}}=\frac{250}{4 \times 0.2 \times 10^{-3} \times 30 \times 10^{3}}=10.42 \mathrm{~A}
$$

The average armature current $\left(I_{\mathrm{a}}^{\mathrm{B}}\right)$ is

$$
I_{\mathrm{a}}^{\mathrm{B}}=\frac{I_{\mathrm{a}}^{\mathrm{B}}}{2}=\frac{10.42}{2}=5.21 \mathrm{~A} .
$$

(e) The load on the DC machine gives $I_{\mathbf{a}}^{\prime}=2 \mathrm{~A}$. Is the converter in discontinuous mode? Note: The duty cycle of the converter is changed.
If the armature current is $5 \mathrm{~A}\left(I_{\mathrm{a}}\right)$ at 50% duty-cycle (D), then the armature current $\left(I_{\mathrm{a}}^{\prime}\right)$ is 2 A , the duty-cycle $\left(D^{\prime}\right)$ is

$$
D^{\prime}=\frac{I_{\mathrm{a}}^{\prime} D}{I_{\mathrm{a}}}=\frac{2 \times 0.8}{5}=0.32
$$

The peak-to-peak armature (iunductor) current ripple $\left(\Delta I_{\mathrm{a}}^{\prime}\right)$ is

$$
\Delta I_{\mathrm{a}}^{\prime}=\frac{D^{\prime}\left(1-D^{\prime}\right)}{L f_{\mathrm{sw}}} V_{\mathrm{d}}=\frac{0.32(1-0.32)}{200 \times 10^{-6} \times 30 \times 10^{3}} \times 250=9.07 \mathrm{~A}
$$

The average armature current $I_{\mathrm{a}}^{\prime}=2 \mathrm{~A}$. The peak armature current ripple $\delta I_{\mathrm{a}}^{\prime}$ is

$$
\delta I_{\mathrm{a}}^{\prime}=\frac{\Delta I_{\mathrm{a}}^{\prime}}{2}=4.53 \mathrm{~A}
$$

The maximum and minimum values of the armature current ($I_{\mathrm{a}}^{\prime \max }$ and $I_{\mathrm{a}}^{\prime}{ }^{\min }$, respectively) are

$$
\begin{aligned}
I_{\mathrm{a}}^{\prime \max } & =I_{\mathrm{a}}^{\prime}+\delta I_{\mathrm{a}}^{\prime}=6.53 \mathrm{~A} \\
I_{\mathrm{a}}^{\prime \min } & =I_{\mathrm{a}}^{\prime}-\delta I_{\mathrm{a}}^{\prime}=-2.53 \mathrm{~A}
\end{aligned}
$$

Since $I_{\mathrm{a}}^{\prime}{ }^{\text {min }}<0$, the converter is in discontinuous mode.
3. An n-channel power MOSFET, a VMO 400-02F made by IXYS, is to be used in a converter (datasheet is attached). The MOSFET is to conduct a continuous current of 300 A when on and the switching frequency is 10 kHz with a 50% duty cycle. The input voltage is 100 V . The internal junction temperature is not to exceed $100^{\circ} \mathrm{C}$ and the maximum ambient temperature is $35^{\circ} \mathrm{C}$.
(a) Calculate the total MOSFET power losses (assume the same time for voltage and current transients, i.e., $t_{\mathbf{r i}}=t_{\mathrm{fv}}=t_{\mathrm{r}}$ and $t_{\mathrm{fi}}=t_{\mathrm{rv}}=t_{\mathrm{f}}$).
From the MOSFET datasheets, the on-state resistance of the MOSFET ($r_{d s(\mathrm{on})}$) and the switching transient times are

$$
r_{d s(\mathrm{on})}=4.2 \mathrm{~m} \Omega \quad t_{r i}=t_{f v}=500 \mathrm{~ns}, \quad t_{r v}=t_{f i}=350 \mathrm{~ns}
$$

The conduction losses of the MOSFET $\left(P_{c}^{l}\right)$ is

$$
P_{c}^{l}=D I_{\mathrm{v}(\max)}^{2} r_{d s(\mathrm{on})}=0.5 \times 300^{2} \times 4.2 \times 10^{-3}=189 \mathrm{~W} .
$$

The switching losses of the MOSFET $\left(P_{s}^{l}\right)$ is

$$
\begin{aligned}
P_{s}^{l} & =\frac{1}{2} V_{\mathrm{d}} I_{\mathrm{v}} t_{\mathrm{sw}} f_{\mathrm{sw}}=\frac{1}{2} V_{\mathrm{d}} I_{\mathrm{v}}\left(t_{r i}+t_{f v}+t_{r v}+t_{f i}\right) f_{\mathrm{sw}} \\
& =\frac{1}{2} \times 100 \times 300 \times\left(2 \times 500 \times 10^{-9}+2 \times 350 \times 10^{-9}\right) \times 10 \times 10^{3}=255 \mathrm{~W} .
\end{aligned}
$$

The total losses in the MOSET $\left(P^{l}\right)$ is

$$
P^{l}=P_{c}^{l}+P_{s}^{l}=189+255=444 \mathrm{~W}
$$

(b) Specify the thermal resistance of the required heat sink (Assume that the MOSTFET has no heat transfer paste).
The thermal resistance of the required heat sink is calculated as follows:

$$
\begin{aligned}
\Delta T_{\mathrm{ja}} & =P^{l}\left(R_{\theta \mathrm{jc}}+R_{\theta \mathrm{ca}}\right) \\
R_{\theta \mathrm{ca}} & =\frac{100-35}{444}-0.051=0.0954 \mathrm{~K} / \mathrm{W} .
\end{aligned} \quad \Longrightarrow R_{\theta \mathrm{ca}}=\frac{\Delta T_{\mathrm{ja}}}{P^{l}}-R_{\theta \mathrm{jc}}
$$

(c) Determine the peak MOSFET drain-to-source voltage during the switching transient if the blocking voltage (MOSFET drain-to-source voltage when it is completely turned off) is 100 V and the parasitic inductance near the MOSFET drain terminal is 100 nH .
The voltage across the MOSFET during the turn-off transient is

$$
V_{\mathrm{ds}}^{\max }=V_{\mathrm{d}}-L \frac{d V_{\mathrm{ds}}}{d t}=100-100 \times 10^{-9} \times \frac{0-300}{350 \times 10^{-9}}=185.71 \mathrm{~V}
$$

$\boxed{\square X X S} \quad$ VMO 400-02F

Symbol	Test Conditions Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			Dimensions in mm ($1 \mathrm{~mm}=0.0394$)
$\mathrm{g}_{\text {ts }}$	$V_{D S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$ pulsed	380	S	
$\mathrm{C}_{\text {iss }}$	\} $V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	53	nF	
$\mathrm{C}_{\text {oss }}$		9.6	nF	
$\mathrm{C}_{\text {rss }}$		3.4	nF	$\square\|\mid 10$
$\mathrm{t}_{\mathrm{d}(0 n)}$	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\text {DSS }}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\text {D25 }}$$\mathrm{R}_{\mathrm{G}}=1 \Omega$ (External)	210	ns	
t_{r}		500	ns	, $0^{2} 0^{2}$ 3 0
$\mathrm{t}_{\text {d(off) }}$		900	ns	
$\mathrm{t}_{\text {f }}$		350	ns	$\xrightarrow[74.5]{-46,5})^{85}$
Q_{g}	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\text {DSS }}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$	2300	nC	\cdots
$Q_{\text {gs }}$		420	nC	
$Q_{\text {gd }}$		1150	nC	
$\mathrm{R}_{\text {thJc }}$	with $30 \mu \mathrm{~m}$ heat transfer paste		0.051 K/W	
$\mathbf{R}_{\text {thJk }}$			0.076 K/W	

Source-Drain Diode $\quad\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$,		Characteristic Values ess otherwise specified)		
Symbol	Test Conditions	min. ${ }^{\text {typ. }}$	max.	
I_{s}	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$		418	A
$\mathrm{I}_{\text {sm }}$	Repetitive; pulse width limited by T_{JM}		1672	A
$\mathrm{V}_{\text {sD }}$	$\begin{aligned} & I_{F}=I_{s} ; V_{G S}=0 \mathrm{~V}, \\ & \text { Pulse test, } t \leq 300 \mu \mathrm{~s} \text {, duty cycle } \mathrm{d} \leq 2 \% \end{aligned}$	0.9	1.2	V
t_{r}	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}},-\mathrm{di} / \mathrm{dt}=1200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}$	600		ns

[^0]4. The output voltages and current of a singe-phase inverter are shown in the figure. Determine the following:

Figure 2: full-bridge inverter output waveforms.
(a) Type of modulation (unipolar or bipolar).

Unipolar modulation.
(b) Switching frequency

Counting the number of positive/negative pulses (or, rising/falling edges) for v_{s} in Figure 2, gives $2 \times m_{f}$ as

$$
2 m_{f}=16 \quad \Longrightarrow m_{f}=8 .
$$

Since m_{f} is defined as

$$
m_{f}=\frac{f_{s w}}{f_{1}} \quad \Longrightarrow f_{s w}=m_{f} f_{1},
$$

where f_{1} is the fundamental frequency, and from Figure 2

$$
f_{1}=\frac{1}{0.01 \mathrm{~s}}=100 \mathrm{~Hz}
$$

Therefore,

$$
f_{s w}=m_{f} f_{1}=800 \mathrm{~Hz}
$$

(c) Inductance.

From Figure 2, during the time interval $t \in[0.0025,0.003] \mathrm{s}$, the $v_{s}=600 \mathrm{~V}$ and for simplicity the voltage after the inductor $v_{\text {out }}$ is about 450 V . Then the voltage drop across the inductor is

$$
\begin{aligned}
V_{L} & =\left.\left(v_{\text {out }}(t)-v_{s}(t)\right)\right|_{t \in[0.0025,0.003]}=\left.L \frac{d i(t)}{d t}\right|_{t \in[0.0025,0.003]} \\
\Longrightarrow L & =\left.\frac{v_{\text {out }}(t)-v_{s}(t)}{\frac{d i}{d t}}\right|_{t \in[0.0025,0.003]}
\end{aligned}
$$

$d t=0.003 \mathrm{~s}-0.0025 \mathrm{~s}$, and from Figure 2, $d i=500 \mathrm{~A}-400 \mathrm{~A}=100 \mathrm{~A}$. Therefore the inductance, L is

$$
L=\frac{600-450}{\frac{100}{0.0005}}=0.5 \mathrm{mH} .
$$

(d) Peak fundamental current.

The peak fundamental output current occurs at $0.0025 \mathrm{~s} \leq t \leq 0.003 \mathrm{~s}$. The average current in this interval is the peak Fundamental output current $\left(\hat{i}_{\text {out (1) }}\right)$

$$
\hat{i}_{\text {out }(1)}=\frac{410+570}{2}=490 \mathrm{~A} .
$$

(e) Pole-to-pole DC-link voltage (V_{d}) and modulation index (m_{a}).

In the full-bridge inverter, the pole-to-pole DC-link voltage $\left(V_{d}\right)$ is

$$
V_{d}=\hat{v}_{s}=600 \mathrm{~V}
$$

The modulation index $\left(m_{a}\right)$ is

$$
m_{a}=\frac{\hat{v}_{s(1)}}{V_{d}}=\frac{480}{600}=0.8
$$

(f) Active power on the load at the fundamental frequency.

The active power on the load ($P_{\text {out }}$) at the fundamental frequency is

$$
P_{\text {out }}=\frac{\hat{v}_{\text {out }(1)} \hat{i}_{\text {out }(1)}}{2}=\frac{455 \times 490}{2}=111.5 \mathrm{~kW}
$$

(g) Phase angle of the fundamental current with respect to the inverter side voltage. At time $t=0 \mathrm{~s}$ the reference signal (fundamental converter output voltage) is 0 V thus the converter output voltage $\left(v_{s}\right)$ is also assumed to be 0 V . However, the fundamental load current (or voltage) is 0 A (or 0 V) at $t=0.0004 \mathrm{~s}$. The time delay (δt) is

$$
\delta t=0.0004 \mathrm{~s} .
$$

If time $t=T=0.01 \mathrm{~s}$ is 2π, then time $t=\delta t$, i.e., phase angle (ϕ) is

$$
\phi=\frac{\delta t}{T} 2 \pi=\frac{0.0004}{0.01} \times 2 \times \pi=14.4^{\circ}
$$

(h) Active and reactive power on the converter at the fundamental frequency.

The active power $\left(P_{s}\right)$ on the converter side is

$$
P_{s}=\frac{\hat{v}_{s(1)} \hat{i}_{\text {out }(1)}}{2} \cos (\phi)=\frac{480 \times 490}{2} \cos \left(14.4^{\circ}\right)=113.91 \mathrm{~kW} .
$$

The reactive power $\left(Q_{s}\right)$ on the converter side is

$$
Q_{s}=\frac{\hat{v}_{s(1)} \hat{i}_{\text {out }(1)}}{2} \sin (\phi)=\frac{480 \times 490}{2} \sin \left(14.4^{\circ}\right)=29.25 \mathrm{kVar} .
$$

5. The problem with ripple in the output current from a single-phase full bridge converter is to be studied. The first harmonic of the output voltage is given by $V_{\mathrm{o}(1)}$ at $f_{1}=50 \mathrm{~Hz}$. The load is given in the figure as $L=10 \mathrm{mH}$ in series with an ideal voltage source $e_{\mathrm{o}}(t)$. It is assumed that the converter operates in sinusoidal PWM mode, bipolar modulation.

$$
e_{\mathrm{o}}(t)=\sqrt{2} \cdot 220 \sin \left(2 \pi f_{1} t\right)
$$

Table 1: Generalized harmonics of a half-bridge inverter output voltage for a large m_{f}.

$h \downarrow m_{a} \rightarrow$	0.2	0.4	0.6	0.8	1
1	0.2	0.4	0.6	0.8	1
Fundamental					
m_{f}	1.242	1.15	1.006	0.818	0.6023
$m_{f} \pm 2$	0.061	0.061	0.131	0.22	0.318
$m_{f} \pm 4$					0.018
$2 m_{f} \pm 1$	0.19	0.326	0.37	0.314	0.181
$2 m_{f} \pm 3$		0.024	0.071	0.139	0.212
$2 m_{f} \pm 5$				0.013	0.033
$3 m_{f}$	0.335	0.123	0.083	0.171	0.133
$3 m_{f} \pm 2$	0.044	0.139	0.203	0.176	0.062
$3 m_{f} \pm 4$		0.012	0.047	0.104	0.157
$3 m_{f} \pm 6$				0.016	0.044
$4 m_{f} \pm 1$	0.163	0.157	0.088	0.105	0.068
$4 m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4 m_{f} \pm 5$			0.034	0.084	0.119
$4 m_{f} \pm 7$					
Note: output voltage $\left(\hat{V}_{o}\right)$ is $\hat{V}_{o}=m_{a} V_{d} / 2$.	0.017	0.05			

Note: Ripple here is referred to as distortion, which is the alteration of the original shape of a signal. Here ripple means the alteration of the waveform from an ideal sinusoidal signal.
(a) The frequency of the triangular signal is 1050 Hz . Calculate the frequency modulation ratio (or pulse number), m_{f}.

$$
m_{f}=\frac{f_{\mathrm{sw}}}{f_{1}}=\frac{1050}{50}=21
$$

(b) Find the dc-voltage when the converter fundamental RMS output voltage $V_{o(1)}$ is 230 V and modulation index, $m_{a}=0.6$.

$$
V_{\mathrm{d}}=\frac{\hat{V}_{o(1)}}{m_{a}}=\frac{\sqrt{2} \times 230}{0.6}=542.12 \mathrm{~V}
$$

(c) Determine the RMS fundamental output current (i.e., current through the inductor).
The equivalent circuit at the fundamental frequency is given as follows

From the figure,

$$
E_{o(1)}=V_{L(1)}+V_{o(1)} \quad \Longrightarrow V_{L(1)}=V_{o(1)}-E_{o(1)}=230-220=10 \mathrm{~V}
$$

Also,

$$
V_{L(1)}=\omega_{n} L I_{o(n)}=2 \pi n f_{1} L I_{o(n)} .
$$

Therefore, the average RMS fundamental output current $\left(I_{o(1)}\right)$, is

$$
I_{o(1)}=\frac{V_{L(1)}}{2 \pi f_{1} L}=\frac{10}{2 \times \pi \times 50 \times 10 \times 10^{-3}}=3.18 \mathrm{~A} .
$$

(d) Determine the RMS and frequency of the highest output ripple current component. The equivalent circuit at the $n^{\text {th }}$ harmonic, where $n \neq 1$ is given as follows

From the figure,

$$
V_{s(n)}=V_{L(n)}=\omega_{n} L I_{o(n)}=2 \pi n f_{1} L I_{o(n)}
$$

or,

$$
I_{o(n)}=\frac{V_{s(n)}}{2 \pi n f_{1} L}=\frac{k V_{d}}{2 \pi n f_{1} L} .
$$

where n and its corresponding k values are taken from Table 1.
The highest ripple component occurs at m_{f}, which is 1050 Hz , and the peak value is

$$
\hat{I}_{o\left(m_{f}\right)}=\frac{1.006 V_{d}}{2 \pi m_{f} f_{1} L}=\frac{1.006 \times 542.12}{2 \times \pi \times 21 \times 50 \times 10 \times 10^{-3}}=8.27 \mathrm{~A} .
$$

The RMS ripple component is

$$
I_{o\left(m_{f}\right)}=\frac{\hat{I}_{o\left(m_{f}\right)}}{\sqrt{2}}=5.85 \mathrm{~A}
$$

(e) If a Unipolar modulation is used, determine the RMS and frequency of the highest output ripple current component.
In Unipolar modulation, the highest ripple components occur at $2 m_{f} \pm 1$, which is 2050 Hz or 2150 Hz , and the peak values are

$$
\begin{aligned}
& \hat{I}_{o\left(2 m_{f}+1\right)}=\frac{0.37 V_{d}}{2 \pi\left(2 m_{f}-1\right) f_{1} L}=\frac{0.37 \times 542.12}{2 \times \pi \times(2 \times 21-1) \times 50 \times 10 \times 10^{-3}}=1.56 \mathrm{~A} . \\
& \hat{I}_{o\left(2 m_{f}-1\right)}=\frac{0.37 V_{d}}{2 \pi\left(2 m_{f}+1\right) f_{1} L}=\frac{0.37 \times 542.12}{2 \times \pi \times(2 \times 21+1) \times 50 \times 10 \times 10^{-3}}=1.49 \mathrm{~A} .
\end{aligned}
$$

In Unipolar modulation, the highest ripple components occur at $2 m_{f}-1$, i.e., 2050 Hz . the RMS value is

$$
I_{o\left(2 m_{f}-1\right)}=\frac{\hat{I}_{o\left(2 m_{f}-1\right)}}{\sqrt{2}}=1.1 \mathrm{~A} .
$$

[^0]: IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:
 $4,835,5924,881,106 \quad 5,017,508 \quad 5,049,961 \quad 5,187,1175,486,715$
 $4,850,072 \quad 4,931,844 \quad 5,034,796 \quad 5,063,307 \quad 5,237,4815,381,025$

