1. You probably figured this one out :)

2. The switched dc-dc step-down converter shown in Figure 1 controls a dc machine with an armature inductance $L_{\rm a}=0.2\,{\rm mH}$. The armature resistance can be neglected. The armature current i_o is 5 A. The switching frequency $f_{\rm sw}=30\,{\rm kHz}$ and the duty cycle, D=0.8. Consider all the components to be ideal

Figure 1: Step-down DC-DC converter.

(a) The output voltage, $V_{\rm o} = 200$ V. Calculate the input voltage, $V_{\rm d}$. The duty cycle is given by

$$D = \frac{V_{\rm o}}{V_{\rm d}}$$

The input voltage is

$$V_{\rm d} = \frac{V_{\rm o}}{D} = \frac{200}{0.8} = 250 \,\rm V.$$

(b) Find the ripple in the armature current.

The peak-to-peak armsture (iunductor) current ripple (ΔI_a) is

$$\Delta I_{\rm a} = \frac{D}{L f_{\rm sw}} \ (V_{\rm d} - V_{\rm o}) = \frac{0.8}{200 \times 10^{-6} \times 30 \times 10^{3}} \ (250 - 200) = 6.67 \, {\rm A}$$

(c) Calculate the maximum and the minimum value of the armature current.

The average armature current $I_a = 5 \,\mathrm{A}$. The peak armature current ripple δI_a is

$$\delta I_{\rm a} = \frac{\Delta I_{\rm a}}{2} = 3.33 \, A$$

The maximum and minimum values of the armature current ($I_{\rm a}^{\rm max}$ and $I_{\rm a}^{\rm min}$, respectively) are

$$I_{\rm a}^{\rm max} = I_{\rm a} + \delta I_{\rm a} = 8.33 \,\mathrm{A}$$

$$I_{\rm a}^{\rm min} = I_{\rm a} - \delta I_{\rm a} = 1.67\,{\rm A}$$

(d) The load on the machine is reduced. Calculate $I_{\rm a}$ when the converter is on the boundary between continuous and discontinuous mode.

The peak-to-peak armsture (iunductor) current ripple (ΔI_a) is

$$\Delta I_{\rm a} = \frac{D}{L \, f_{\rm sw}} \, \left(V_{\rm d} - V_{\rm o} \right) = \frac{D}{L \, f_{\rm sw}} \, \left(V_{\rm d} - D \, V_{\rm d} \right) = \frac{D \, \left(1 - D \right)}{L \, f_{\rm sw}} \, V_{\rm d}.$$

From the above equation, it is clear that ΔI_a is maximum when D=0.5. Therefore, The armature current ripple when the converter is on the boundary between continuous and discontinuous mode $(\Delta I_a^{\rm B})$ is

$$\Delta I_{\rm a}^{\rm B} = \frac{V_{\rm d}}{4\,L\,f_{\rm sw}} = \frac{250}{4\times0.2\times10^{-3}\times30\times10^{3}} = 10.42\,{\rm A}.$$

2

The average armature current $(I_{\mathbf{a}}^{\mathbf{B}})$ is

$$I_{\rm a}^{\rm B} = \frac{I_{\rm a}^{\rm B}}{2} = \frac{10.42}{2} = 5.21 \,\mathrm{A}.$$

(e) The load on the DC machine gives $I_{\bf a}'=2\,{\bf A}$. Is the converter in discontinuous mode? Note: The duty cycle of the converter is changed.

If the armature current is 5 A (I_a) at 50% duty-cycle (D), then the armature current (I'_a) is 2 A, the duty-cycle (D') is

$$D' = \frac{I_{\rm a}'D}{I_{\rm a}} = \frac{2 \times 0.8}{5} = 0.32.$$

The peak-to-peak armature (iunductor) current ripple ($\Delta I_{\rm a}'$) is

$$\Delta I_{\rm a}' = \frac{D'~(1-D')}{L~f_{\rm sw}}~V_{\rm d} = \frac{0.32~(1-0.32)}{200\times 10^{-6}\times 30\times 10^{3}}\times 250 = 9.07~{\rm A}$$

The average armature current $I_{\rm a}'=2\,{\rm A}.$ The peak armature current ripple $\delta I_{\rm a}'$ is

$$\delta I_{\rm a}' = \frac{\Delta I_{\rm a}'}{2} = 4.53 \, A$$

The maximum and minimum values of the armature current $(I_a^{'\max}$ and $I_a^{'\min}$, respectively) are

$$\begin{split} &I_{\rm a}^{'{\rm max}} = I_{\rm a}' + \delta I_{\rm a}' = 6.53\,{\rm A} \\ &I_{\rm a}^{'{\rm min}} = I_{\rm a}' - \delta I_{\rm a}' = -2.53\,{\rm A} \end{split}$$

Since $I_{\rm a}^{' \rm min} < 0$, the converter is in discontinuous mode.

- 3. An n-channel power MOSFET, a VMO 400-02F made by IXYS, is to be used in a converter (datasheet is attached). The MOSFET is to conduct a continuous current of 300 A when on and the switching frequency is 10 kHz with a 50% duty cycle. The input voltage is 100 V. The internal junction temperature is not to exceed 100°C and the maximum ambient temperature is 35°C.
 - (a) Calculate the total MOSFET power losses (assume the same time for voltage and current transients, i.e., $t_{ri} = t_{fv} = t_r$ and $t_{fi} = t_{rv} = t_f$).

From the MOSFET datasheets, the on-state resistance of the MOSFET $(r_{ds(on)})$ and the switching transient times are

$$r_{ds(\text{on})} = 4.2 \,\text{m}\Omega$$
 $t_{ri} = t_{fv} = 500 \,\text{ns},$ $t_{rv} = t_{fi} = 350 \,\text{ns}.$

The conduction losses of the MOSFET (P_c^l) is

$$P_c^l = D I_{\text{v(max)}}^2 r_{ds(\text{on})} = 0.5 \times 300^2 \times 4.2 \times 10^{-3} = 189 \,\text{W}.$$

The switching losses of the MOSFET (P_s^l) is

$$P_s^l = \frac{1}{2} V_d I_v t_{sw} f_{sw} = \frac{1}{2} V_d I_v (t_{ri} + t_{fv} + t_{rv} + t_{fi}) f_{sw}$$

= $\frac{1}{2} \times 100 \times 300 \times (2 \times 500 \times 10^{-9} + 2 \times 350 \times 10^{-9}) \times 10 \times 10^3 = 255 \text{ W}.$

The total losses in the MOSET (P^l) is

$$P^{l} = P_{c}^{l} + P_{s}^{l} = 189 + 255 = 444 \,\mathrm{W}.$$

(b) Specify the thermal resistance of the required heat sink (Assume that the MOST-FET has no heat transfer paste).

The thermal resistance of the required heat sink is calculated as follows:

$$\Delta T_{\rm ja} = P^l (R_{\rm \theta jc} + R_{\rm \theta ca})$$
 $\Longrightarrow R_{\rm \theta ca} = \frac{\Delta T_{\rm ja}}{P^l} - R_{\rm \theta jc}$
 $R_{\rm \theta ca} = \frac{100 - 35}{444} - 0.051 = 0.0954 \,\mathrm{K/W}.$

(c) Determine the peak MOSFET drain-to-source voltage during the switching transient if the blocking voltage (MOSFET drain-to-source voltage when it is completely turned off) is 100 V and the parasitic inductance near the MOSFET drain terminal is 100 nH.

The voltage across the MOSFET during the turn-off transient is

$$V_{\rm ds}^{\rm max} = V_{\rm d} - L \frac{dV_{\rm ds}}{dt} = 100 - 100 \times 10^{-9} \times \frac{0 - 300}{350 \times 10^{-9}} = 185.71 \,\text{V}.$$

MegaMOS™FET **Module**

VMO 400-02F

= 200 V = 418 A $= 4.2 \text{ m}\Omega$

N-Channel Enhancement Mode

Symbol	Test Conditions	s	Maximum	Ratings
V _{DSS}	T _J = 25°C to 15	60°C	200	V
$\mathbf{V}_{\mathtt{DGR}}$	$T_J = 25^{\circ}C \text{ to } 15^{\circ}$	$60^{\circ}\text{C}; R_{\text{GS}} = 10 \text{ k}\Omega$	200	٧
V _{gs}	Continuous		±20	٧
V _{GSM}	Transient		±30	٧
I _{D25}	T _K = 25°C		418	Α
I _{DM}	$T_{_{\rm K}}$ = 25°C, $t_{_{\rm P}}$ =	10 μs	1672	Α
P _D	T _c = 25°C T _v = 25°C		2450 1640	W
	- K 25 5		-40+150	°C
T _{.m}			150	°C
T _{stg}			-40 +125	°C
V _{ISOL}	50/60 Hz I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s	3000 3600	V~ V~
M _d	Mounting torque (M6) Terminal connection torque (M5)		2.25-2.75/20-25 2.5-3.7/22-33	
Weight	typical including	screws	250	g

Symbol	Test Conditions $(T_{_{\rm J}}=25^\circ$	Cha C, unless of min.	 stic Va e speci max.	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 12 \text{ mA}$	200		V
$V_{\rm GS(th)}$	$V_{DS} = 20 \text{ V}, I_{D} = 120 \text{ mA}$	3	6	V
I _{GSS}	$V_{GS} = \pm 20 \text{ V DC}, V_{DS} = 0$		±500	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0 \text{ V} T_{J} = 25^{\circ}$ $V_{DS} = 0.8 \bullet V_{DSS}, V_{GS} = 0 \text{ V} T_{J} = 128^{\circ}$	°C 5°C		mA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.5 \bullet I_{D25}$ Pulse test, t \le 300 \mus, duty cycle d \le 2	2 %	4.2	mΩ

1 = Drain 2 = Source 10 = Kelvin Source 11 = Gate

Features

- International standard package
- Direct Copper Bonded Al₂O₃ ceramic base plate

- Isolation voltage 3600 V~
 Low R_{DS(on)} HDMOS™ process
 Low package inductance for high speed switching

 • Kelvin Source contact for easy drive

Applications

- AC motor speed control for electric vehicles
- DC servo and robot drives
- Switched-mode and resonant-mode
- power supplies

 DC choppers

Advantages

- Easy to mount Space and weight savings High power density
- Low losses

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS Corporation 3540 Bassett Street, Santa Clara, CA 95054 Tel: 408-982-0700 Fax: 408-496-0670

IXYS Semiconductor Edisonstr. 15, D-68623 Lampertheim, Germany Tel: +49-6206-5030 Fax: +49-6206-503629

Symbol	Symbol Test Conditions Characterist (T = 25°C, unless otherwise		
	(1 _J = 25°C, unless o min.	typ.	max.
g _{fs}	V_{DS} = 10 V; I_{D} = 0.5 • I_{D25} pulsed	380	s
C _{iss})	53	nF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	9.6	nF
$\mathbf{C}_{\mathrm{rss}}$)	3.4	nF
t _{d(on)})	210	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	500	ns
t _{d(off)}	$R_{\rm G} = 1 \Omega $ (External)	900	ns
$\mathbf{t}_{_{\mathrm{f}}}$)	350	ns
$\overline{\mathbf{Q}_{g}}$)	2300	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	420	nC
\mathbf{Q}_{gd})	1150	nC
R _{thJC}			0.051 K/W
R_{thJK}	with 30 μm heat transfer paste		0.076 K/W

Source-Drain Diode Cha

Characteristic Values (T. = 25°C, unless otherwise specified)

Symbol	Test Conditions min.	typ.	max.	ieu)
I _s	V _{GS} = 0 V		418	Α
I _{sm}	Repetitive; pulse width limited by T_{JM}		1672	Α
V _{sD}	$I_F = I_S$; $V_{GS} = 0 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, duty cycle d $\le 2 \%$	0.9	1.2	V
t _{rr}	$I_F = I_S$, -di/dt = 1200 A/ μ s, $V_{DS} = 100 V$	600		ns

4. The output voltages and current of a singe-phase inverter are shown in the figure. Determine the following:

Figure 2: full-bridge inverter output waveforms.

(a) Type of modulation (unipolar or bipolar).

Unipolar modulation.

(b) Switching frequency

Counting the number of positive/negative pulses (or, rising/falling edges) for v_s in Figure 2, gives $2 \times m_f$ as

$$2 m_f = 16 \implies m_f = 8.$$

Since m_f is defined as

$$m_f = rac{f_{sw}}{f_1} \qquad \Longrightarrow f_{sw} = m_f f_1,$$

where f_1 is the fundamental frequency, and from Figure 2

$$f_1 = \frac{1}{0.01 \,\mathrm{s}} = 100 \,\mathrm{Hz}.$$

Therefore,

$$f_{sw} = m_f f_1 = 800 \,\mathrm{Hz}.$$

(c) Inductance.

From Figure 2, during the time interval $t \in [0.0025, 0.003]$ s, the $v_s = 600$ V and for simplicity the voltage after the inductor v_{out} is about 450 V. Then the voltage drop across the inductor is

$$V_L = (v_{out}(t) - v_s(t)) \Big|_{t \in [0.0025, 0.003]} = L \frac{di(t)}{dt} \Big|_{t \in [0.0025, 0.003]}$$

$$\implies L = \frac{v_{out}(t) - v_s(t)}{\frac{di}{dt}} \Big|_{t \in [0.0025, 0.003]}.$$

 $dt = 0.003\,\mathrm{s} - 0.0025\,\mathrm{s},$ and from Figure 2, $di = 500\,\mathrm{A} - 400\,\mathrm{A} = 100\,\mathrm{A}.$ Therefore the inductance, L is

$$L = \frac{600 - 450}{\frac{100}{0.0005}} = 0.5 \,\text{mH}.$$

(d) Peak fundamental current.

The peak fundamental output current occurs at $0.0025 \,\mathrm{s} \leq t \leq 0.003 \,\mathrm{s}$. The average current in this interval is the peak Fundamental output current $(\hat{i}_{out(1)})$

$$\hat{i}_{out(1)} = \frac{410 + 570}{2} = 490 \,\text{A}.$$

(e) Pole-to-pole DC-link voltage (V_d) and modulation index (m_a) .

In the full-bridge inverter, the pole-to-pole DC-link voltage (V_d) is

$$V_d = \hat{v}_s = 600 \,\mathrm{V}.$$

The modulation index (m_a) is

$$m_a = \frac{\hat{v}_{s(1)}}{V_d} = \frac{480}{600} = 0.8.$$

(f) Active power on the load at the fundamental frequency.

The active power on the load (P_{out}) at the fundamental frequency is

$$P_{out} = \frac{\hat{v}_{out(1)} \, \hat{i}_{out(1)}}{2} = \frac{455 \times 490}{2} = 111.5 \, \text{kW}.$$

(g) Phase angle of the fundamental current with respect to the inverter side voltage.

At time t=0 s the reference signal (fundamental converter output voltage) is 0 V thus the converter output voltage (v_s) is also assumed to be 0 V. However, the fundamental load current (or voltage) is 0 A (or 0 V) at t=0.0004 s. The time delay (δt) is

$$\delta t = 0.0004 \,\mathrm{s}.$$

If time $t = T = 0.01 \,\mathrm{s}$ is 2π , then time $t = \delta t$, i.e., phase angle (ϕ) is

$$\phi = \frac{\delta t}{T} 2\pi = \frac{0.0004}{0.01} \times 2 \times \pi = 14.4^{\circ}.$$

(h) Active and reactive power on the converter at the fundamental frequency.

The active power (P_s) on the converter side is

$$P_s = \frac{\hat{v}_{s(1)} \,\hat{i}_{out(1)}}{2} \,\cos(\phi) = \frac{480 \times 490}{2} \,\cos(14.4^\circ) = 113.91 \,\text{kW}.$$

The reactive power (Q_s) on the converter side is

$$Q_s = \frac{\hat{v}_{s(1)} \,\hat{i}_{out(1)}}{2} \sin(\phi) = \frac{480 \times 490}{2} \sin(14.4^\circ) = 29.25 \,\text{kVar}.$$

8

5. The problem with ripple in the output current from a single-phase full bridge converter is to be studied. The first harmonic of the output voltage is given by $V_{o(1)}$ at $f_1 = 50 \,\mathrm{Hz}$. The load is given in the figure as $L = 10 \,\mathrm{mH}$ in series with an ideal voltage source $e_o(t)$. It is assumed that the converter operates in sinusoidal PWM mode, bipolar modulation.

$$e_0(t) = \sqrt{2} \cdot 220 \sin(2\pi f_1 t)$$

Table 1: Generalized harmonics of a half-bridge inverter output voltage for a large m_f .

$h \downarrow m_a \rightarrow$	0.2	0.4	0.6	0.8	1
1	0.2	0.4	0.6	0.8	1
Fundamental					
$\overline{m_f}$	1.242	1.15	1.006	0.818	0.6023
$m_f \pm 2$	0.061	0.061	0.131	0.22	0.318
$m_f \pm 4$					0.018
$\overline{2m_f \pm 1}$	0.19	0.326	0.37	0.314	0.181
$2m_f \pm 3$		0.024	0.071	0.139	0.212
$2m_f \pm 5$				0.013	0.033
$\overline{3m_f}$	0.335	0.123	0.083	0.171	0.133
$3m_f \pm 2$	0.044	0.139	0.203	0.176	0.062
$3m_f \pm 4$		0.012	0.047	0.104	0.157
$3m_f \pm 6$				0.016	0.044
$\overline{4m_f \pm 1}$	0.163	0.157	0.088	0.105	0.068
$4m_f \pm 3$	0.012	0.070	0.132	0.115	0.009
$4m_f \pm 5$			0.034	0.084	0.119
$4m_f \pm 7$				0.017	0.05

Note: output voltage (\hat{V}_o) is $\hat{V}_o = m_a V_d/2$.

Note: Ripple here is referred to as distortion, which is the alteration of the original shape of a signal. Here ripple means the alteration of the waveform from an ideal sinusoidal signal.

(a) The frequency of the triangular signal is $1050 \,\mathrm{Hz}$. Calculate the frequency modulation ratio (or pulse number), m_f .

$$m_f = \frac{f_{\text{sw}}}{f_1} = \frac{1050}{50} = 21.$$

(b) Find the dc-voltage when the converter fundamental RMS output voltage $V_{o(1)}$ is 230 V and modulation index, $m_a=0.6$.

$$V_{\rm d} = \frac{\hat{V}_{o(1)}}{m_a} = \frac{\sqrt{2} \times 230}{0.6} = 542.12 \,\text{V}.$$

(c) Determine the RMS fundamental output current (i.e., current through the inductor).

The equivalent circuit at the fundamental frequency is given as follows

9

From the figure,

$$E_{o(1)} = V_{L(1)} + V_{o(1)} \implies V_{L(1)} = V_{o(1)} - E_{o(1)} = 230 - 220 = 10 \text{ V}$$

Also,

$$V_{L(1)} = \omega_n L I_{o(n)} = 2\pi n f_1 L I_{o(n)}.$$

Therefore, the average RMS fundamental output current $(I_{o(1)})$, is

$$I_{o(1)} = \frac{V_{L(1)}}{2\pi f_1 L} = \frac{10}{2 \times \pi \times 50 \times 10 \times 10^{-3}} = 3.18 \,\text{A}.$$

(d) Determine the RMS and frequency of the highest output ripple current component.

The equivalent circuit at the n^{th} harmonic, where $n \neq 1$ is given as follows

From the figure,

$$V_{s(n)} = V_{L(n)} = \omega_n L I_{o(n)} = 2\pi n f_1 L I_{o(n)}.$$

or,

$$I_{o(n)} = \frac{V_{s(n)}}{2\pi \, n \, f_1 \, L} = \frac{k \, V_d}{2\pi \, n \, f_1 \, L}.$$

where n and its corresponding k values are taken from Table 1.

The highest ripple component occurs at m_f , which is 1050 Hz, and the peak value is

$$\hat{I}_{o(m_f)} = \frac{1.006\,V_d}{2\pi\,m_f\,f_1\,L} = \frac{1.006\times542.12}{2\times\pi\times21\times50\times10\times10^{-3}} = 8.27\,\mathrm{A}.$$

The RMS ripple component is

$$I_{o(m_f)} = \frac{\hat{I}_{o(m_f)}}{\sqrt{2}} = 5.85$$
A.

(e) If a Unipolar modulation is used, determine the RMS and frequency of the highest output ripple current component.

In Unipolar modulation, the highest ripple components occur at $2m_f \pm 1$, which is 2050 Hz or 2150 Hz, and the peak values are

$$\begin{split} \hat{I}_{o(2m_f+1)} &= \frac{0.37\,V_d}{2\pi\,\left(2m_f-1\right)\,f_1\,L} = \frac{0.37\times542.12}{2\times\pi\times\left(2\times21-1\right)\times50\times10\times10^{-3}} = 1.56\,\mathrm{A}.\\ \hat{I}_{o(2m_f-1)} &= \frac{0.37\,V_d}{2\pi\,\left(2m_f+1\right)\,f_1\,L} = \frac{0.37\times542.12}{2\times\pi\times\left(2\times21+1\right)\times50\times10\times10^{-3}} = 1.49\,\mathrm{A}. \end{split}$$

In Unipolar modulation, the highest ripple components occur at $2m_f-1$, i.e., $2050\,\mathrm{Hz}$. the RMS value is

$$I_{o(2m_f-1)} = \frac{\hat{I}_{o(2m_f-1)}}{\sqrt{2}} = 1.1$$
A.