TSFS17 Elkraftsystem Fö 5 – Begränsningar och Elnätstabilitet

Lars Eriksson, professor ISY, Fordonssystem

En-dimensionell bild av Elkraftsystemet

• Idag: Transmissionsnätet, begränsningar & stabilitet.

Bild från: Renewable and Efficient Electric Power Systems Gilbert M. Masters (2004)

Dynamik - Bild: fjäder och massa i rörelse

TSFS17 Elkraftsystem - Lars Eriksson - Fö 5 - Kapacitet & Stabilitet

2023-11-16 4

1. Elnätsstabilitet Ledningar

Stationära tillstånd och gränser

Distribuerad ledningsmodell

- Distribuerad modell, många element
- $z = R + j\omega L$ Ω/m , series impedance per unit length
- $y = G + j\omega C$ S/m, shunt admittance per unit length
- $Z = zl \quad \Omega$, total series impedance
- Y = yl S, total shunt admittance
- l = line length m

Distribuerad ledningsmodell

- Distribuerad modell, många element
- Differentialekvationer för V(x) & I(x)

$$\frac{dV(x)}{dx} = zI(x) \qquad \qquad \frac{dI(x)}{dx} = yV(x) \qquad \qquad \frac{d^2V(x)}{dx^2} - zyV(x) = 0$$

• Lösning $V(x) = A_1 e^{\gamma x} + A_2 e^{-\gamma x}$ $\gamma = \sqrt{zy}$ m⁻¹

$$I(x) = \frac{A_1 e^{\gamma x} - A_2 e^{-\gamma x}}{z/\gamma} \qquad z/\gamma = z/\sqrt{zy} = \sqrt{z/y}$$

- Karaktäristisk impedans: $Z_c = \sqrt{\frac{z}{y}} \Omega$
- Bestäm integrationskonstanterna $A_1 \& A_2$ med randvillkor $V_R \& I_R$ I_S Z = zt I_R

 $V_{\rm S}$

 $\frac{1}{T}\frac{Y}{2}=\frac{Y'}{2}$

 $\frac{Y}{2}$ =

 V_{R}

$$V(x) = \left(\frac{e^{\gamma x} + e^{-\gamma x}}{2}\right) V_{\mathrm{R}} + Z_c \left(\frac{e^{\gamma x} - e^{-\gamma x}}{2}\right) I_{\mathrm{R}}$$
$$I(x) = \frac{1}{Z} \left(\frac{e^{\gamma x} - e^{-\gamma x}}{2}\right) V_{\mathrm{R}} + \left(\frac{e^{\gamma x} + e^{-\gamma x}}{2}\right) I_{\mathrm{R}}$$

 $V(x) = \cosh(\gamma x) V_{\rm R} + Z_c \sinh(\gamma x) I_{\rm R}$ $I(x) = \frac{1}{Z_c} \sinh(\gamma x) V_{\rm R} + \cosh(\gamma x) I_{\rm R}$

2023-11-16 7

Surge Impedance - Överspänningsimpedans

• Förlustfri ledning R = G = 0

$$z = j\omega L \quad \Omega/m$$
$$y = j\omega C \quad S/m$$

• Karaktäristiska impedansen, blir Reel, kallas "Surge Impedance"

$$Z_c = \sqrt{\frac{z}{y}} = \sqrt{\frac{j\omega L}{j\omega C}} = \sqrt{\frac{L}{C}} \quad \Omega$$

• Utbredningskonstanten blir rent imaginär

$$\gamma = \sqrt{zy} = \sqrt{(j\omega L)(j\omega C)} = j\omega \sqrt{LC} = j\beta m^{-1}$$

• Våglängd: $f\lambda = \frac{1}{\sqrt{LC}} \approx 3 \cdot 10^8$, 50 Hz ger $\lambda \approx 6000$ km

Ekvivalenta Pi-Krets parametrar

Z' betecknar ekvivalenta Pi-kretsens Z En lång ledning ger mer impedans och fasvrider mer.

$$Z' = j Z_c \sin(\beta l) = j X' \quad \Omega$$

Surge Impedance Loading (SIL)

- Belasta ledningen med Z_C
- SIL definieras som effekt vid märkspänning Vrated

$$SIL = \frac{V_{rated}^2}{Z_C}$$

• Impedansmatchning – Ingen vågreflektion

Spänning, Impedans och SIL

Table 4-2

Surge Impedance and Three-Phase Surge Impedance Loading [2, 6]

Nominal Voltage	$Z_c(\Omega)$	SIL(MW)
230 kV	375	140 MW
345 kV	280	425 MW
500 kV	250	1000 MW
765 kV	255	2300 MW

Samma information olika böcker. Att skicka aktiv effekt ökar med V^2

V _{rated} (kV)	$Z_{\mathcal{C}} = \sqrt{L/C}$ (\Omega)	$\begin{aligned} SIL = V_{rated}^2 / \mathcal{Z}_{\mathcal{C}} \\ (MW) \end{aligned}$
69	366–400	12–13
138	366–405	47–52
230	365–395	134–145
345	280–366	325–425
500	233–294	850-1075
765	254–266	2200–2300

Spänningsprofiler (upp till $\frac{1}{4}$ våglängd)

- 1. At no load, I_{RNL} = 0, so the voltage increases from V_S = $(\cos \beta l)V_{RNL}$ at sending end to V_{RNL} at receiving end
- 2. Voltage profile at SIL is flat
- 3. For a short circuit at the load, $V_{RSC} = 0$, so the voltage decreases from $V_S = (\sin \beta l)(Z_c I_{RSC})$ at sending end to $V_{RSC} = 0$ at receiving end
- 4. The full-load voltage profile, which depends on the specification of full-load current, lies above the short-circuit voltage profile

TSFS17 Elkraftsystem - Lars Eriksson - Fö 5 - Kapacitet & Stabilitet

2023-11-16 12

2. Ledningskapacitet och Stabilitet

Princip för långdistans effektöverföring

X har inga aktiva förluster $\rightarrow P_m = -P_s$ V_{S} Х jX_L <u>I</u> P_m+iQ_m P_s+iQ $\bar{S_s} = P_s + jQ_s = 3\frac{\bar{V_s}}{\sqrt{2}}\bar{I_s^*}$ $\bar{S}_{s} = 3\frac{\bar{V}_{s}}{\sqrt{3}} \left(\frac{\bar{V}_{s} - \bar{V}_{m}}{\sqrt{3}iX}\right)^{*} = j\frac{\bar{V}_{s}\bar{V}_{s}^{*}}{X} - j\frac{\bar{V}_{s}\bar{V}_{m}^{*}}{X} = j\frac{V_{s}^{2}}{X} - j\frac{\bar{V}_{s}\bar{V}_{m}^{*}}{X} = j\frac{V_{s}^{2}}{X} + \frac{V_{s}V_{m}}{X}(-j\cos\Psi + \sin\Psi)$ Om $V_s = V_m$, $\Psi > 0$ aktiv effekt överförs. Termen Om $|V_s| > |V_m|$ överförs reaktiv effekt från s till m, och rent imaginär $\overline{|P_s|} = |P_m| < P_{max}$ vise versa. ingår i Q_s Frekvens styr aktiv effekt, spänning styr reaktiv effekt

Gräns för långdistans effektöverföring

FIGURE 5.11

Real power delivered by a lossless line versus voltage angle across the line

- 2. Ökad belastning ger ökad vinkel Ψ
- 3. Över maxgränsen. Generator och förbrukare tappar synkronisering.

Uttryck kapacitet mha SIL

- Ekvationer från bok $\delta=\Psi$
- Byt till per enhet p.u.

 $\mathbf{P} = \frac{\mathbf{V}_{\mathrm{S}} \mathbf{V}_{\mathrm{R}} \sin \delta}{Z_{c} \sin \beta l} = \left(\frac{\mathbf{V}_{\mathrm{S}} \mathbf{V}_{\mathrm{R}}}{Z_{c}}\right) \frac{\sin \delta}{\sin\left(\frac{2\pi l}{\lambda}\right)}$

$$\mathbf{P} = \left(\frac{\mathbf{V}_{\mathrm{S}}}{\mathbf{V}_{\mathrm{rated}}}\right) \left(\frac{\mathbf{V}_{\mathrm{R}}}{\mathbf{V}_{\mathrm{rated}}}\right) \left(\frac{\mathbf{V}_{\mathrm{rated}}^2}{Z_c}\right) \frac{\sin \delta}{\sin\left(\frac{2\pi l}{\lambda}\right)}$$

$$= V_{Sp.u.} V_{Rp.u.} (SIL) \frac{\sin \delta}{\sin \left(\frac{2\pi l}{\lambda}\right)} \quad W$$

- Resultat
 - Ökar med kvadraten på spänningen
 - Minskar med ledningslängd

Ledningens belastningsgränser

- Power lines are not operated to deliver their theoretical maximum power
 - Theoretical max power: rated terminal voltages and an angular displacement $\Psi = 90^{\circ}$
- Practical loadability:

LINKÖPING

- Voltage-drop limit $V_R/V_S \le 0.95$
- Maximum angular displacement of 30 to 35° across the line
- For short lines less than 25 km long, loadability is limited by the thermal rating of the conductors or by terminal equipment ratings, not by voltage drop or stability considerations

Vad begränsar transmissionsledningens kapacitet

Loadability of Transmission Lines [6]

Line Length (km)	Limiting Factor	Multiple of SIL
0 - 80	Thermal	> 3
80 - 240	5% Voltage Drop	1.5 - 3
240 - 480	Stability	1.0 - 1.5

- En ledning är inuduktor, långa ledare får stor induktans.
- Induktans äter upp reaktiv effekt. Kan inte skicka reaktiv effekt långt.
- Serie kompensering.

TSFS17 Elkraftsystem - Lars Eriksson - Fö 5 - Kapacitet & Stabilitet

2023-11-16 18

3. Elnätsstabilitet

Dynamiska tillstånd och förlopp

Synchronous Generator until now

- Steady state
 - All generators run synchronously (think tandem bike)
 - $\omega_m = \omega_{m,s(ynchronous)} \Leftrightarrow \omega_e \Leftrightarrow 50 \text{ Hz}, P_m = T_m \omega_m$
 - $P_e = P_m \Leftrightarrow o = P_m P_e$ and $P_e(E,V,X_d,\delta)$ and $Q_e(E,V,X_d,\delta)$
- Electromagnetic dynamics at short-circuit
 - Subtransient period during the first ms $\Leftrightarrow X_d^{"}$
 - Transient period during the following s \Leftrightarrow X'_d -
 - Steady state $\Leftrightarrow X_d$
- Today electro<u>mechanical</u> dynamics in the 1 Hz range

Lastvinkel och Rotorns moment, T

$$T = \frac{\pi}{2} \left(\frac{\text{poles}}{2}\right)^2 \Phi_{\rm R} F_{\rm f} \sin \delta_{\rm RF}$$

 Φ_R resultant air-gap flux per pole
 F_f mmf of the dc field winding
 $\delta_{\rm RF}$ electrical phase angle between
 magnetic axes of Φ_R and F_f

Maskinens effekt $P = \omega T$

Mekanisk turbineffekt

Balansekvationer

Tillstånd motsvarar energi. Förändring motsvarar effekt. Tillstånd kan inte ändras snabbare än vad högerled och tröghet medger

Kondensator $C \frac{dV}{dt} = i_{in} - i_{ut}$ $W = \frac{1}{2}CV^2$

Newton 2 Rotation

Induktans

$$J\frac{d\omega}{dt} = T_{acc} - T_{br} \qquad \qquad L\frac{di}{dt} = u_{oka} - u_{minska}$$
$$W = \frac{1}{2}J\omega^2 \qquad \qquad W = \frac{1}{2}Li^2$$

Masströghet J i nordiska nätet.

• Finngrid presenterar data

250

184

Inertia

229 GWs

The Swing Equation - in per unit

- General torque balance for rotor (Newton's second law Ma=F)
- Multiply torque balance by
- Divide by S_{base} to get p.u.:
- Use $\omega_m \approx \omega_{m,s}$ on left-hand side:
- p magnetic rotor poles
- Complicated! Use ω_e as state (next slide)

$$J\frac{d\omega_m}{dt} = T_m - T_e$$

 $\omega_m \rightarrow T\omega = P$ on right-hand side

$$\frac{\omega_m}{S_{base}} J \frac{d\omega_m}{dt} = P_m(p.u.) - P_e(p.u.)$$
$$\frac{\omega_m}{S_{base}} J \frac{d\omega_m}{dt} \approx \frac{\omega_{m,s}}{S_{base}} J \frac{d\omega_m}{dt}$$

$$\omega_m$$
(mech. rad/s) = $\frac{2}{p}\omega_e$ (elec. rad/s)

The inertia constant H

$$\frac{\omega_{m,s}}{S_{base}} J \frac{d\omega_{m}}{dt} = \frac{2}{\omega_{m,s}} \frac{1}{2} J \omega_{m,s}^{2} \frac{d\omega_{m}}{dt} = \frac{2}{\omega_{e,s}} \frac{1}{2} J \omega_{m,s}^{2} \frac{d\omega_{e}}{dt} = \frac{2H}{\omega_{e,s}} \frac{d\omega_{e}}{dt}$$

$$\frac{1}{2} J \omega_{m}^{2}}{\frac{1}{2} J \omega_{m}^{2}} = \frac{\text{Kinetic energy of rotating masses}}{\text{Generator MVA rating}} = H \quad \text{Unit:} \\ \text{Ws/VA=s}$$
The per unit swing equation:
$$\frac{2H}{\omega_{e,s}} \frac{d\omega_{e}}{dt} = P_{m}(p.u.) - P_{e}(p.u.)$$

H on different MVA bases

- Machine base
 - Steam turbines
 - Gas turbines
 - Hydro turbines
 - Synchronous compensator
- Common base
 - H ~ generator size (kW-GW)
 - Infinite bus has infinite H \rightarrow fixed frequency (and phase)

"Single Machine Infinite Bus"

Represents one generator connected to a large system

"Classical" dynamic generator model

Synchronous generator connected to infinite bus:

 $\begin{cases} \frac{2H}{\omega_{e,s}} \frac{d\omega_e}{dt} = P_m - P_e(\delta) \\ \frac{d\delta}{dt} = \omega_e - \omega_{e,s} \end{cases}$

- δ in rad, ω_e in rad/s, $\omega_{e,s}$ typically 100 π rad/s
- •E'_q and X'_d for slow transients in P_e (δ) with V and X//X //=in parallell
- •Second order system with poor damping
- •Electro-mechanical or "swing" dynamics

Two equilibrium points

Dynamic response

Temporary short-circuit near generator, P_e zero during fault Response? $\uparrow P_e$

- 1. Second order system
- 2. No damping
- 3. Oscillator! δ and ω oscillate
- 4. $\delta(t)$ will lag $\omega(t)$

Small disturbance \rightarrow sinusoids (se slide1) \rightarrow linear model OK

Second order response

- P_e=0 at short-circuit near gen (source feeds just X → Q)
- Step in P_m - P_e
- Mechanical states slow
- Start at δ_0 and $P_e(\delta_0)$
- Acceleration during fault
- Fault removed at $\delta = \delta_1 = clearing$ angle
- Overshoot to δ_2 and $P_e(\delta_2)$
- Oscillate around equilibrium δ_0 so $P_e(\delta_0)=P_m$

Second order response

Transient or large disturbance angle stability

- δ_0 must be less than <u>steady state limit</u> 90°
- δ_2 also has limit <u>transient angle stability limit</u>
- Questions:
- How large can δ_2 be?
- What happens when it becomes too large?
- What is the largest disturbance that is OK?

Beyond stability limit

- $d\omega/dt$ never becomes zero
- Rotor accelerates even more
- Machine <u>transiently unstable</u> = <u>loses synchronism</u>
- Must disconnect and resynchronise

"The Equal Area Criterion"

- Short-circuit: Pe=zeroMark areas between $P_e(\delta)$ and P_m in interval δ_0 to δ_2
- Accelerating Area: Below P_m
- Decelerating Area : Above P_m
- For <u>stable</u> system AA=DA

EAC derivation

Integrate both sides over relevant δ range $\left|\frac{H}{\omega_{s,e}}\int_{\delta_0}^{\delta_2} d\left(\frac{d\delta}{dt}\right)^2 = \int_{\delta_0}^{\delta_2} \left(P_m - P_e\right) d\delta$ • Textbook 12.3 $\frac{2H}{\omega_{s,e}} \frac{d^2 \delta}{dt^2} = P_m - P_e$ Trick1: multiply with d\delta/dt $\left| \frac{H}{\omega_{s,e}} \left[\left(\frac{d\delta}{dt} \right)^2 \right]_s^{\delta_2} = 0 - 0 = \int_{\delta_2}^{\delta_2} \left(P_m - P_e \right) d\delta$ $\frac{2H}{\omega_{s,e}} \frac{d^2 \delta}{dt^2} \frac{d\delta}{dt} = (P_m - P_e) \frac{d\delta}{dt}$ $\frac{H}{\omega_{s,e}} \frac{d}{dt} \left(\frac{d\delta}{dt}\right)^2 = (P_m - P_e) \frac{d\delta}{dt}$ $AA = \int_{s}^{\delta_1} (P_m - P_e) d\delta = \int_{\delta_1}^{\delta_2} (P_m - P_e) d\delta = DA$ Trick2: multiply with dt

TSFS17 Elkraftsystem - Lars Eriksson - Fö 5 - Kapacitet & Stabilitet

2023-11-16 59

2. Charts

Examples of LiU colours in charts.

Use as inspiration. Clear and simple charts always work best.

TSFS 17 Elkraftsystem

Föreläsning

https://isy.gitlab-pages.liu.se/fs/courses/TSFS17/

Lars Eriksson, Professor ISY, Fordonssystem

