TSFS17 -Föreläsning 11 Fuel Cells and Vehicles

> Lars Eriksson Professor

Vehicular Systems Linköping University

December 15, 2023

Lars Friksson (LiU											
				 -	20	100	-	 <u> </u>		-	
	-				-			-	34	_	

TSFS17 - Fö 11 - Fuel Cells

December 15, 2023

1.4 2 1.4 2 1

э.

2 Fuel Cell Modeling

Lars Eriksson (LiU)

TSFS17 - Fö 11 - Fuel Cells

December 15, 2023

ж.

2/22

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Convert fuel directly to electrical energy
- Let an ion pass from an anode to a cathode
- Take out electrical work from the electrons

Fuel Cell Stack

- The voltage out from one cell is just below 1 V.
- Fuel cells are stacked, in series.

э

Components in a Fuel Cell Stack

Overview of Different Fuel Cell Technologies

Lars Eriksson (LiU)

TSFS17 - Fö 11 - Fuel Cells

December 15, 2023

ж.

- Among the most efficient fuel cells 70%
- Low temperature 65-220°C
 - Quick start, fast dynamics
 - No co-generation
- Sensitive to poisoning

-

э.

PEMFC – Proton Exchange Membrane Fuel Cell

Advantages:

- Relatively high power-density characteristic
- Operating temperature, less than 100°C –Allows rapid start-up
- Good transient response, i.e. change power -Top candidate for automotive applications
- Other advantages relate to the electrolyte being a solid material, compared to a liquid

Disadvantages:

- Require expensive catalyst material (Platinum)
- For some applications operating temperature is low
- The electrolyte is required to be saturated with water to operate optimally.
 Careful control of the moisture of the anode and cathode streams is important

TSFS17 – Fö 11 – Fuel Cells

The Other Types of H₂ Fuel Cells

- Other fuel cell types are
 - PAFC Phosphoric Acid Fuel Cell
 - MCFC Molten Carbonate Fuel Cell
 - SOFC Solid Oxide Fuel Cells
- Hotter cells, slower, more difficult to control
- Power generation through co-generation

175°C 650°C 1000°C

э

- Hydrogen storage is a challenging task.
- Some examples of different options.
 - Compressed Hydrogen storage
 - Liquid phase Cryogenic storage, -253°C
 - Metal hydride
 - Sodium borohydride NaBH₄

э.

イロト イボト イヨト イヨト

Comparison of H₂ Fuel Cells – US DOE

Fuel Cell Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Disadvantages
Polymer Electrolyte Membrane (PEM)	Perfluoro sulfonic acid	50-100°C 122-212° typically 80°C	< 1kW-100kW	60% transpor- tation 35% stationary	 Backup power Portable power Distributed generation Transporation Specialty vehicles 	Solid electrolyte re- duces corrosion & electrolyte management problems Low temperature Quick start-up	Expensive catalysts Sensitive to fuel impurities Low temperature waste heat
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10-100 kW	60%	• Military • Space	Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components	Sensitive to CO ₂ in fuel and air Electrolyte management
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	 Distributed generation 	 Higher temperature enables CHP Increased tolerance to fuel impurities 	 Pt catalyst Long start up time Low current and power
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/ or potassium carbonates, soaked in a matrix	600-700°C 1112-1292°F	300 kW-3 MW 300 kW module	45-50%	Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP	High temperature cor- rosion and breakdown of cell components Long start up time Low power density
Solid Oxide (SOFC)	Yttria stabi- lized zirconia	700-1000°C 1202-1832°F	1kW-2 MW	60%	 Auxiliary power Electric utility Distributed generation 	High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte Suitable for CHP & CHHP Hybrid/GT cycle	High temperature cor- rosion and breakdown of cell components High temperature opera- tion requires long start up time and limits

Lars Eriksson (LiU)

TSFS17 – Fö 11 – Fuel Cells

Fuel Cell Applications in USA – US DOE

Fuel Cells for Stationary Power. Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.

~75.000 fuel cells have been shipped worldwide.

>15.000 fuel cells shipped in 2009

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.

Production & Delivery of Hvdrogen

In the U.S., there are currently:

~9 million metric tons of H₂ produced annually

> 1200 miles of H_o pipelines

Source: US DOE 09/2010

In the U.S., there are currently:

- > 200 fuel cell vehicles
- ~ 20 active fuel cell buses
- ~ 60 fueling stations

Sept. 2009: Auto . manufacturers from around the world signed a letter of understanding supporting fuel cell vehicles in anticipation of widespread commercialization. beginning in 2015.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ э

Lars Eriksson (LiU)

TSFS17 – Fö 11 – Fuel Cells

December 15, 2023

12/22

Lars Eriksson (LiU)

2

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Standard modeling approach
- Keys for understanding:
 - Cell The polarization curve
 - Operation The Surrounding System

-

イロト イボト イヨト イヨト

Fuel Cell Thermodynamics

• Starting point reaction equation

$$H_2 + \frac{1}{2} O_2 \Rightarrow H_2 O_2$$

Open system energy – Enthalpy H

$$H = U + pV$$

Available (reversible) energy – Gibbs free energy G

$$G = H - TS$$

Open circuit cell voltages

$$U_{rev} = -\frac{\Delta G}{n_e F}, \qquad U_{id} = -\frac{\Delta H}{n_e F}, \qquad U_{rev} = \eta_{id} U_{id}$$

F – Faradays constant (F = q N₀)

 $P_{I} = I_{fc}(t) \left(U_{id} - U_{fc}(t) \right)$

Heat losses under load

Lars Eriksson (LiU)

TSFS17 – Fö 11 – Fuel Cells

 \Rightarrow Cooling system

Fuel Cell Performance – Polarization curve

- Polarization curve of a fuel cell Relating current density $i_{fc}(t) = I_{fc}(t)/A_{fc}$, and cell voltage $U_{fc}(t)$ Curve for one operating condition
- Fundamentally different compared to combustion engine/electrical motor
- Excellent part load behavior –When considering only the cell – η_{cell} follows the Voltage

Fuel cell voltage

$$U_{fc}(t) = U_{rev}(t) - U_{act}(t) - U_{ohm}(t) - U_{conc}(t)$$

• • • • • December 15, 2023

ъ

17/22

Fuel cell voltage

$$U_{fc}(t) = U_{rev}(t) - U_{act}(t) - U_{ohm}(t) - U_{conc}(t)$$

 Activation energy – Get the reactions going Semi-empirical Tafel equation

$$U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$$

Fuel cell voltage

$$U_{fc}(t) = U_{rev}(t) - U_{act}(t) - U_{ohm}(t) - U_{conc}(t)$$

 Activation energy – Get the reactions going Semi-empirical Tafel equation

$$U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$$

• Ohmic - Resistance to flow of ions in the cell

$$U_{ohm}(t) = i_{fc}(t) \, \tilde{R}_{fc}$$

Fuel cell voltage

$$U_{fc}(t) = U_{rev}(t) - U_{act}(t) - U_{ohm}(t) - U_{conc}(t)$$

 Activation energy – Get the reactions going Semi-empirical Tafel equation

$$U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$$

• Ohmic - Resistance to flow of ions in the cell

$$U_{ohm}(t) = i_{fc}(t)\, ilde{R}_{fc}$$

• Concentration, change in concentration of the reactants at the electrodes

$$U_{conc}(t) = c_2 \cdot i_{fc}(t)^{c_3}$$
, or $U_{conc}(t) = \dots$

Fuel Cell System Modeling

A complete fuel cell system

Power at the stack with N cells

э.

Important effects for the cell and system

Lars Eriksson (LiU)

TSFS17 - Fö 11 - Fuel Cells

December 15, 2023

19/22

Fuel Cell System Modeling

• Describe all subsystems with models

$$P_2(t) = P_{st}(t) - P_{aux}(t)$$

 $P_{aux} = P_0 + P_{em}(t) + P_{ahp}(t) + p_{hp}(t) + P_{cl}(t) + p_{cf}(t)$

em-electric motor, ahp – humidifier pump, hp – hydrogen recirculation pump, cl – coolant pump, cf – cooling fan.

Fuel Cell System Performance at Low and High Pc

Individual Cell

Fuel Cell System Cell Voltage and Power and System efficiency P@1=25 n=4 @10E o 0.1 U [V], P [W/m²] 9.0 0.4 í٥. 0.4 0.6 0.8 12 14 1.6 1.8 Cell Current [A/m²]

-Efficiency is highest at part loads towards low load.

-The system is stealing current to keep the cell operating.

Lars Eriksson (LiU)

TSFS17 – Fö 11 – Fuel Cells

December 15, 2023

Lars Eriksson (LiU)

2

・ロト ・ 同ト ・ ヨト ・ ヨト