
Exam with solutions

TSFS06 Diagnosis and Supervision
June 5, 2020, kl. 14.00-19.00

(Note! 5 hours)

Responsible teacher: Erik Frisk

Solution language: Swedish or English

Total 40 points.

Preliminary grade limits
Grade 3: 18 points
Grade 4: 25 points
Grade 5: 30 points



Information about this exam, read this carefully before starting with the tasks.

1. Submission of solutions is done in Lisam.

2. Note that the exam is one hour longer than normal, i.e., deadline for submission is 19:00.
In case of technical difficulties when submitting, send per email (erik.frisk@liu.se).

3. The exam will not be graded anonymously.

4. Course material in this course and others are allowed aids. You can use any computer tools
used in the course, but if you use computer tools be careful to explain intermediate steps.
Just entering a command in Matlab is not a solution.

5. It is not permitted to consult, take help from, or in any way communicate about the exam
with anyone else during the examination time.

6. Some tasks require that you write a little code and you will need access to Matlab. For those
tasks, you shall also submit your code. Skeleton files, with pointers to any Matlab functions
you need, will be provided.

7. You are responsible for ensuring that your submitted solutions are readable, so be careful if
you scan/photo your solutions. If I cant read your solutions, I can’t give any points.

8. During the examination time I will be available by Zoom on the link

https://liu-se.zoom.us/...

I have activated a waiting room so I will only let you in one at a time. If Zoom is not working,
you can reach me on 013 - 28 57 14.



Task 1. Consider the small electrical circuit

C
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which has 5 components: the signal source, two resistors, one capacitor and one inductance. The
reference value u for the signal source is known and the system is also equipped with two current
sensors measuring i1 and i3. The process can ideally be described by the equations

v3 = R2i3 + fR2 v1 = v2 + v3

i1 = i2 + i5 i1 = i3 + i4 + i5

v1 = u+ fu v2 = R1i2 + fR1

v3 = L
d

dt
i4 + fL i5 = C

d

dt
v1 + fC

where f = (fu, fR1, fR2, fL, fC) are faults in the corresponding components.

a) Write the model in the form

H(p)x+ L(p)z + F (p)f = 0 (1)

and determine the model redundancy. Make any model manipulations and simplifications
you like. (3 points)

b) For a model in the form (1) write down 1) the transfer function for any residual generator,
and 2) the transfer function from faults to residual. (1 points)

c) Design a residual generator that isolates a fault in the capacitor from a fault in the inductor.
The residual generator shall have a time constant of approximately 2 seconds and be written
in state-space form. (4 points)

Hint: The observable canonical form of

G(p) = b1p
n−1 + · · ·+ bn−1p+ bn

pn + a1pn−1 + · · ·+ an−1p+ an

is given by

ẋ(t) =


−a1 1 0 . . . 0
−a2 0 1 . . . 0
...

...
...

...
−an−1 0 0 . . . 1
−an 0 0 . . . 0

x(t) +


b1
b2
...

bn−1
bn

u(t)

y(t) =
(
1 0 0 . . . 0

)
x(t)
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Solution.

a) The model in matrix form, with no simplifications, is

H =



0 0 1 0 0 −R2 0 0
0 0 0 1 −1 0 0 −1
1 0 0 0 0 0 0
0 0 1 0 0 0 −sL 0
1 −1 −1 0 0 0 0 0
0 0 0 1 0 −1 −1 −1
0 1 0 −R1 0 0 0 0
−sC 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0



L =



0 0 0
0 0 0
0 0 −1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0


, F =



0 0 −1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0


with x = v1, v2, v3, i1, i2, i3, i4, i5), z = (y1, y2, u), and f = (fu, fR1, fR2, fL, fC).

The model has redundancy 2 since the matrix H has 10 rows and rank 8. This also comes
from the two sensors.

b)

R(p) = 1
d(p)γ(p)NH(p)L(p)

Grf (p) = − 1
d(p)γ(p)NH(p)F (p)

c) Form a consistency relation from

i5 = C
d

dt
v1 = Cu̇

where
i5 = i1 − i2 = y1 −

1
R1

v2 = y1 −
1
R1

(u−R2y2).

Thus, the consistency relation is given by

y1 −
1
R1

(u−R2y2)− Cu̇ = 0.

Compute residual according to the expression

ṙ + αr = y1 −
1
R1

(u−R2y2)− Cu̇

and with state variable w = r+Cu we get the state-space realization of the residual generator

ẇ = −αw + y1 + R2

R1
y2 + (αC − 1

R1
)u

r = w − Cu
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Task 2. Assume 5 residuals has been designed to supervise 5 faults according to the decision
structure

f1 f2 f3 f4 f5
r1 X X X
r2 X X X
r3 X X X
r4 X X X
r5 X X X X

where fault fi indicates fault in component Ci, i = 1, . . . , 5.

a) Assume all 5 residuals has given an alarm, i.e., exceeded its corresponding threshold. Write
down the generated conflicts and indicate which that are minimal conflicts. Write the conflicts
with logic notation and let OK(Ci) and ¬OK(Ci) denote that component i is fault-free and
faulty respectively. (2 points)

b) With the alarms from the a-task, compute all minimal diagnoses. Express the diagnoses using
OK(Ci) and ¬OK(Ci). Describe under which assumptions all minimal diagnoses characterize
all diagnoses. (4 points)

c) Compute the fault isolability matrix for the 5 residuals described above. (2 points)

Solution.

a) There are 5 conflicts

π1 = OK(C1) ∧OK(C2) ∧OK(C3)
π2 = OK(C1) ∧OK(C4) ∧OK(C5)
π3 = OK(C1) ∧OK(C3) ∧OK(C4)
π4 = OK(C2) ∧OK(C3) ∧OK(C4)
π5 = OK(C2) ∧OK(C3) ∧OK(C4) ∧OK(C5) (non-minimal)

b) There are 6 minimal diagnoses

D1 = OK(C1) ∧ ¬OK(C2) ∧OK(C3) ∧ ¬OK(C4) ∧OK(C5) ({C2, C4})
D2 = OK(C1) ∧OK(C2) ∧ ¬OK(C3) ∧ ¬OK(C4) ∧OK(C5) ({C3, C4})
D3 = OK(C1) ∧OK(C2) ∧ ¬OK(C3) ∧OK(C4) ∧ ¬OK(C5) ({C3, C5})
D4 = ¬OK(C1) ∧ ¬OK(C2) ∧OK(C3) ∧OK(C4) ∧OK(C5) ({C1, C2})
D5 = ¬OK(C1) ∧OK(C2) ∧ ¬OK(C3) ∧OK(C4) ∧OK(C5) ({C1, C3})
D6 = ¬OK(C1) ∧OK(C2) ∧OK(C3) ∧ ¬OK(C4) ∧OK(C5) ({C1, C4})

c) Isolability matrix

f1 f2 f3 f4 f5
f1 X
f2 X X
f3 X
f4 X
f5 X X
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Task 3. Consider the following system model

ẋ1 = x1x2 + u+ f1

ẋ2 = −(1 + δ)x2 + x1

y = x2 + f2

where xi are the unknown dynamic states, y and u known measurement and control signal, and fi
the faults we want to detect. The parameter δ models uncertainty.

a) Discuss, briefly, why and how normalization/adaptive thresholds are useful when designing
fault detectors. (2 points)

b) Assume that we know that the uncertainty parameter fulfills the constraint

|δ| < 0.1

Design a simple residual generator (you can assume derivatives of known signals are known),
and design an adaptive threshold. (3 points)

Solution.

a) See lecture 6 and chapters 4 and 5 in the course literature.

b) Insert y in the model and differentiating you get

ẏ = −(1 + δ)y + x1

ÿ = −(1 + δ)ẏ + x1y + u

Multiply the first equation with y and subtract the equations yields

yẏ − ÿ + y2 − ẏ + u = (−y2 + ẏ)δ

Thus, an adaptive threshold for

r = yẏ − ÿ + y2 − ẏ + u

could be
Jadp = |ẏ − y2| · 0.1 + J0

Task 4.
a) Consider a residual r with the internal form

rt = ft + et (2)

where et is white Gaussian noise with mean 0 and variance 1. Assume we make a one-sided
test, i.e., raise an alarm when r > J (note: not |r|) for a specified threshold J

Let the cumulative distribution function for a N (0, 1)1 be denoted by Φ, i.e.,

Φ(r) =
∫ r

−∞

1√
2π
e−

x2
2 dx

Write expressions, using Φ, for (2 points)

– the threshold J such that the probability of false-alarm equals α.
1The notation N (µ, σ2) represents Gaussian/Normal-distribution with expected value µ and variance σ2.
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– the power function, i.e., detection performance as a function of fault size.

b) In the provided file task4.m2, there is code that generates a residual (2) with a fault of size
f = 2 introduced at t = 5, looking like

0 2 4 6 8 10
t

−3

−2

−1

0

1

2

3

4

5

r

Implement and compare performance of the following two detection algorithms

– low-pass filter + thresholding of the residual

– a CUSUM detector on the residual (no statistical knowledge assumed)

You do not have to select thrshold systematically/theoretically, it is enough to select theshold
by visual inspection. Discuss how you choose design parameters and discuss consequences.
Include relevant plots. (4 points)

c) Assume that you have full statistical knowledge of the residual, i.e., that the residual is
distributed N (0, 1) in the fault-free case and N (2, 1) in the faulty-case. Design an optimal
CUSUM-test with this knowledge and compare performance (visually) with the CUSUM
from the b-task. (2 points)

d) Instead of a change in mean, consider a change in variance as below

0 2 4 6 8 10
t

−4

−2

0

2

4

r

In the file task4.m, there is code to generate this residual. Assume you know that the
residual is distributed N (0, 1) in the fault-free case and N (0, 4) in the faulty-case. Modify
the algorithm in the c-exercise to detect this change. Include relevant plots. (2 points)

Solution.

a) The expression for the threshold is given by

P (r > J |f = 0) = P (e > J) = 1− Φ(J)⇒ J = Φ−1(1− α)
2A Python version, task4.py, is also included that you can use if you prefer.
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and the power function

β(f) = P (r > J |f) = P (e+ f > J) = 1− P (e ≤ J − f) = 1− Φ(J − f)

b-d) See Chapter 4.7 in the course material, parts of Chapter 2 in the book “Detection of Abrupt
Changes”, and Lecture 8.

Task 5. Consider an electric motor

V

R L

+
−

+

−
ηKaω

i
Tm Tl

Tm − Tl = T

A, somewhat ideal, model is given by the equations

e1 : V = iR+ L
di

dt
+Kaiω e4 : T = Tm − Tl e6 : y1 = Tl

e2 : Tm = ηKai
2 e5 : dθ

dt
= ω e7 : y2 = i

e3 : J dω
dt

= T − bω e8 : y3 = ω

where θ and ω are angle and angular velocity respectively, T net torque, Tm generated torque, Tl
load torque, and i current. The known signals are the voltage V , the measurements y1, y2, and y3
that measures Tl, i and ω. The known constants; b friction coefficient, Ka magnetization constant,
η efficiency coefficient for torque generation, R resistance, and L inductance.

a) Model the following 5 faults: increased resistance in the motor (fR), reduced torque genera-
tion efficiency (fη), faults in sensors (f1, f2, and f3) (1 points)

b) Design a residual generator that isolates fault f2 from f1. The residual generator shall be
written in state-space form, with no derivatives of known signals included. (4 points)

Solution.

a) A model including faults is, for example, given by

e1 : V = iR(1 + fR) + L
di

dt
+Kaiω e4 : T = Tm − Tl e6 : y1 = Tl + f1

e2 : Tm = (1− fη)ηKai
2 e5 : dθ

dt
= ω e7 : y2 = i+ f2

e3 : J dω
dt

= T − bω e8 : y3 = ω + f3

b) A consistency relation is derived by substituting y2 and y3 into e1. Introducing residual
generator dynamics gives

ṙ + αr = V − y2R− Lẏ2 −Kay2y3

With state variable w = r+Ly2, a state-space formulation of the residual generator is given
by

ẇ = −α(w − Ly2) + V −Ry2 −Kay2y3

r = w − Ly2

This residual is sensitive to f2 but not f1.
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Task 6. Assume you have a residual r that detects two faults f1 and f2. The detector has a
false-alarm probability of pfa = 0.01, probability to detect f1, f2 and a double fault f1&f2 as
p1 = 0.95, p2 = 0.8, and p12 = 0.96 respectively. Denote the a priori probabilities of faults, i.e.,
p(f1) = pf1 = 0.01 and p(f2) = pf2 = 0.02. The faults f1 and f2 can be assumed independent.

Assume we get an alarm in the residual and we want to rank faults f1 and f2. Therefore, derive
the expression for

P (f2|r)
P (f1|r)

(3)

A main difficulty when doing Bayesian diagnostic inference is that the a priori probabilities pf1
and pf2 can be difficult to estimate. Assume we know their relative size, i.e., we know

pf2

pf1
= c

for some constant c, but we do not know the true values for pf2 and pf1. Make an argument
why/when computing (3) with incorrect a prori probabilities, but with correct relative size, gives
a good approximation for fault ranking. (4 points)

Solution.
P (f2|r)
P (f1|r)

= p2(1− pf1)pf2 + p12pf1pf2

p1pf1(1− pf2) + p12pf1pf2
=

1 + p2
p12

1−pf1
pf1

1 + p1
p12

1−pf2
pf2

≈ 1.687

Assume now a factor k incorrect estimate of pf1. Since the ratio c is known and correct, we have
exactly the same factor in error for pf2.

Using the incorrectly scaled a-priori, we can expand the expression above as

1 + p2
p12

1−k pf1
k pf1

1 + p1
p12

1−k pf2
k pf2

=
1 + p2

p12
( 1
k pf1

− 1)
1 + p1

p12
( 1
k pf2

− 1)
≈

1 + p2
p12

1
k pf1

1 + p1
p12

1
k pf2

=
k p12 + p2

pf1

k p12 + p1
pf2

≈
p2
pf1
p1
pf2

where the first approximation is valid if pf1 and pf2 are small and the second if p2/pf1 � k p12
and p1/pf2 � k p12.
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