1. This is a continuation of exercise 4.1. The curves below show how $\alpha_{f}-\alpha_{r}$ depends on a_{y} / g. Draw curves that allows you to determine the following:
a) The steer angle δ_{f} for constant curve radius $R=100 \mathrm{~m}$.
b) The steer angle δ_{f} for constant velocity $70 \mathrm{~km} / \mathrm{h}$.
c) The quotient L / R for constant steer angle $\delta_{f}=2.5^{\circ}$.

2. This is a continuation of exercise 4.1. Assume that $m=1600 \mathrm{~kg}$, $I_{z}=2800 \mathrm{kgm}^{2}, l_{1}=l_{2}=1.4 \mathrm{~m}$, and that the center of gravity is low enough so that longitudinal load transfer may be neglected. The car is traveling at $70 \mathrm{~km} / \mathrm{h}$ and keeps a constant curve radius of 100 m when a braking force is applied on the rear wheels.
a) Use the friction ellipse to determine $F_{y r}$ if the braking force is $F_{x}=0.5 \cdot F_{x, \max }$.
b) Determine the yaw acceleration $\dot{\Omega}_{z}$.
c) How should δ_{f} change for $\dot{\Omega}_{z}=0$ to hold instantaneously?

The figure below is the tire-force characteristics from exercise 4.1.

3. In Lecture 4 the equation

$$
\delta_{f}=\frac{L}{R}+K_{u s} \frac{a_{y}}{g}
$$

was derived for the steering angle at steady state cornering in the case of front-wheel steering. Assume that a rear-wheel steering is added to the model with the steer angle δ_{r}, as we did in Lecture 7. What is the corresponding relation?
4. It was shown in Lecture 7 that

$$
\begin{aligned}
{\left[\begin{array}{l}
V_{y}(s) \\
\Omega_{z}(s)
\end{array}\right] } & =(s M+A)^{-1}\left(\mathbf{u}_{f} \delta_{f}(s)+\mathbf{u}_{r} \delta_{r}(s)\right) \\
& =\frac{1}{\Delta}\left[\begin{array}{cc}
I_{z} s+a_{4} & -a_{2} \\
-a_{3} & m s+a_{1}
\end{array}\right]\left(\left[\begin{array}{c}
2 C_{\alpha f} \\
2 l_{1} C_{\alpha f}
\end{array}\right] \delta_{f}+\left[\begin{array}{c}
2 C_{\alpha r} \\
-2 l_{2} C_{\alpha r}
\end{array}\right] \delta_{r}\right)
\end{aligned}
$$

where

$$
\Delta=I_{z} m s^{2}+\left(I_{z} a_{1}+m a_{4}\right) s+\left(a_{1} a_{4}-a_{2} a_{3}\right) .
$$

Assume that $C_{\alpha f}=C_{\alpha r}=C_{\alpha}$ and $l_{1}=l_{2}=L / 2$ and consider a step in the front steer angle, $\delta_{f}(s)=1 / s$. Use the initial value theorem, i.e., $f\left(0^{+}\right)=\lim _{s \rightarrow \infty} s F(s)$, to determine the immediate response in \dot{V}_{y} and $\dot{\Omega}_{z}$ in the two cases $\delta_{r}=\delta_{f}$ (rear wheels in phase) and $\delta_{r}=-\delta_{f}$ (rear wheels out-of phase), respectively. (Hint: You don't need to calculate the matrix A.)
5. The lateral forces, as a function of the slip angle, for the front and rear tires respectively is given by the following figure:

The vehicle mass is $m=1600 \mathrm{~kg}$, the wheelbase $L=2.6 \mathrm{~m}$, and the center of gravity is 1.2 m behind the front axle. The vehicle is driving through a long curve with radius is $R=100 \mathrm{~m}$ (assume stationary conditions). Determine the steer angle δ_{f} if the velocity is $v=90 \mathrm{~km} / \mathrm{h}$.
6. In this exercise, we study steady-state cornering and use the tire brush model. Assume that $l_{1}=l_{2}, C_{\alpha f}<C_{\alpha r}$, and $\mu_{r}<\mu_{f}$.
a) Sketch the normalized curves $F_{y f} / F_{z f}$ and $F_{y r} / F_{z r}$ in the same figure.
b) What value of a_{y} / g yields the critical value of the slip angle (according to the brush model) in the front and rear respectively.
c) Calculate the understeer gradient as a function of a_{y} / g.

Answers

1. Curves:

2. a) $F_{y r}=2.6 \mathrm{kN}$
b) $\dot{\Omega}_{z}=0.20 \mathrm{rad} / \mathrm{s}^{2}$
c) δ_{f} should be reduced by about 0.2°.
3. $\delta_{f}-\delta_{r}=\frac{L}{R}+K_{u s} \frac{a_{y}}{g}$
4. if $\delta_{f}=\delta_{r}$:

$$
\left[\begin{array}{l}
V_{y}\left(0^{+}\right) \\
\Omega_{z}\left(0^{+}\right)
\end{array}\right]=\left[\begin{array}{c}
\frac{4 C_{\alpha}}{m} \\
0
\end{array}\right]
$$

if $\delta_{f}=-\delta_{r}$:

$$
\left[\begin{array}{c}
V_{y}\left(0^{+}\right) \\
\Omega_{z}\left(0^{+}\right)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{2 L C_{\alpha}}{I_{z}}
\end{array}\right]
$$

5. $\delta_{f}=3.5^{\circ}$
6. a) ...
b) $\mu_{f} / 2$ and $\mu_{r} / 2$ respectively.
c) If $a_{y} / g<\mu_{r} / 2$:

$$
K_{u s}=\frac{m g}{4}\left(\frac{1}{C_{\alpha f}}-\frac{1}{C_{\alpha_{r}}}\right)
$$

If $\mu_{r} / 2 \leq a_{y} / g<\mu_{f} / 2$:

$$
K_{u s}=\frac{m g}{4}\left(\frac{1}{C_{\alpha f}}-\frac{\mu_{r}^{2}}{4 C_{\alpha_{r}}\left(\mu_{r}-a_{y} / g\right)^{2}}\right)
$$

If $\mu_{f} / 2 \leq a_{y} / g$:

$$
K_{u s}=\frac{m g}{4}\left(\frac{\mu_{f}^{2}}{4 C_{\alpha_{f}}\left(\mu_{f}-a_{y} / g\right)^{2}}-\frac{\mu_{r}^{2}}{4 C_{\alpha_{r}}\left(\mu_{r}-a_{y} / g\right)^{2}}\right)
$$

