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Exercise 1.2 c

In this exercise the slope angle is 0.5 degrees. If the longitudinal forces
acting on the car is computed carelessly, then the result looks something
like this:

RgRr

The resultant is pointing backwards, which is of course not correct. When
using the model used previously to calculate the rolling resistance Rr , it is
assumed that the vehicle is moving forward.

Conclusion:
The car is not moving at all.
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Car at rest

Consider a car at rest. Assume a slip based model is used for the
longitudinal force when the car starts moving.

How should the slip be defined?

How can a model like the one shown in Figure 1.16 be used?
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Section 1

Cornering: Three problems
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Side forces: Question 1

Consider a that a car moving along a straight line with constant
longitudinal velocity with all wheel pointing in the direction of travel.
Assume that motion of car is perturbed and the direction of the car
suddenly is different from the direction of motion with no angular velocity:

Direction of motion

Question 1: In which direction will the car turn?
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Side forces: Question 2

Assume that a lateral force Fy is applied at the center of gravity of a car
driving straight.

v

Fy

Question 2: In which direction will the car turn?
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Side forces: Question 3

Assume that a car is taking a turn with constant speed and constant turn
radius.

Question 3: Assume that the speed is increases. In which direction should
the steering wheel be turned to make the car stay on the same circle?
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Side forces: A simple model

A wheel moving in the lateral lateral direction give rise to a cornering force
Fy och self-aligning torque Mz = tp · Fy :

α

tpFy

v

The slip angle α is the angle between the direction of the wheel and the
direction of the velocity vector v.

To begin with, a simple linear model will be used to represent the relation
between the slip angle α and the cornering force Fy

Fy = Cαα

where Cα is called the cornering stiffness.
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Side forces: A non-linear example

Figure 1.25 in the text book shows an example how the cornering force
depends on the slip angle α and the normal force Fz :
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Answer to Question 1

It was assumed that the angular velocity is zero and in this case the slip
angle is the same for at four wheels.

Direction of motion

Let denote this angle α and let the cornering stiffness of the wheel in the
front and rear axis be denoted by Cαf and Cαf , respectively.

The total cornering forces at the front axis and rear axis are then equal to
2Cαf α, and 2Cαrα, respectively.
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Answer to Question 1

The moment of the cornering forces about the center of gravity is equal to

Mz = 2l2Cαrα− 2l1Cαf α = 2α(Cαr l2 − Cαf l1)

with clock-wise as the positive direction.

The sign of the expression Cαr l2 − Cαf l1 gives the answer to Question 1.

Positive sign: The car turns towards the direction of the unperturbed
path.

Equal to zero: The car does not turn at all and continue in the
perturbed direction.

Negative sign: The car turns counterclockwise and the deviation from
the original path increases even further.
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Answer to Question 1

The sign of the expression Cαr l2 − Cαf l1 depends on the location of he
center of gravity and the ratio between the cornering stiffness in the front
and rear.

Question 1 will be studied more thoroughly later in the course.
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Answer to Question 2

The limit case in Question 1 was the case Cαr l2 − Cαf l1 = 0.
It will now be shown that this is also the limit case for Question 2, i.e, in
which direction will the following car turn:

v

Fy

Proposition: If Cαr l2 − Cαf l1 = 0, then there is exists a steady motion
where the car moves with constant velocity without turning.
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Answer to Question 2

If the car is not turning, then the side-slip angle is equal for all four tires
and the value is given by force equilibrium in the lateral direction:

Fy − 2Cαf α− 2Cαrα = 0

The moment of the cornering forces about the center of gravity is in this
case equal to

Mz = 2α(Cαr l2 − Cαf l1) = 0

and the car will continue without turning.

The answer to the Question 2 in the two other cases where
Cαr l2 − Cαf l1 6= 0 is the same as for Question 1. The analysis requires
more advanced analysis and is beyond the scope of this presentation.
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Question 3: Steady state cornering

Question 3: The car is driving with constant speed on a circle with radius
R and origin O. Assume that the speed is increases. In which direction
should the steering wheel be turned to make the car stay on the same
circle? The following single-track model will be used in the analysis:

R

O

Ωz

It is assumed that the cornering stiffness of tires are 2Cαf and 2Cαr , i.e.,
double the cornering stiffness of the four-wheel model.
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Steady state cornering: Kinematics

δf αf

αr

≈ L
R

O

Ωz

αr

δf − αf

R

Triangle to the left: αr + (90o − αr ) + 90o = 180o

Triangle to the right: (δf − αf ) + (90o − (δf − αf )) + 90o = 180o

Approximation of the angle at O: αr + (δf − αf ) ≈ L
R
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Steady state cornering: Kinematics

δf αf

αr

≈ L
R

O

Ωz

αr

δf − αf

R

δf =
L

R
+ αf − αr
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Steady state cornering
L

Ωz

Fyr
Fyf

l2
l1

Equations of motion with solutions:

Fyf + Fyr = may =
W

g

V 2

R

Fyf l1 − Fyr l2 = Iz Ω̇z = 0

Fyf = may
l2
L

=
W

g

V 2

R

l2
L

Fyr = may
l1
L

=
W

g

V 2

R

l1
L
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Steady state cornering

Equations of motion with solutions

Fyf + Fyr = may =
W

g

V 2

R

Fyf l1 − Fyr l2 = Iz Ω̇z = 0

Fyf = may
l2
L

=
W

g

V 2

R

l2
L

Fyr = may
l1
L

=
W

g

V 2

R

l1
L

Equations of motions with solutions

Wf + Wr =
mg

2
=

W

2

Wf l1 −Wr l2 = Iz Ω̇y = 0

Wf =
mg

2

l2
L

=
W

2

l2
L

Wr =
mg

2

l1
L

=
W

2

l1
L

A comparison of the solutions gives the relations

Fyf = 2Wf
ay
g
, Fyr = 2Wr

ay
g
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Steady state cornering

Using the tire models, Fyf = 2Cαf αf and Fyr = 2Cαrαr , the slip angles
can be written as

αf =
Fyf

2Cαf
=

Wf

Cαf

ay
g

αr =
Fyr

2Cαr
=

Wr

Cαr

ay
g

The steering angle is

δf =
L

R
+ αf − αr =

L

R
+

Wf

Cαf

ay
g
− Wr

Cαr

ay
g

=
L

R
+ Kus

ay
g

where the understeer gradient is defined as

Kus =
Wf

Cαf
− Wr

Cαr
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Understeer gradient

Kus =
Wf

Cαf
− Wr

Cαr
=

W

2LCαf Cαr
(Cαr l2 − Cαf l1)

Kus > 0: The car is said to be understeer.

Kus = 0: The car is said to be neutral steer.

Kus < 0: The car is said to be oversteer.
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Answer to Question 3

The steering angle is

δf =
L

R
+ Kus

V 2

gR
=

L

R
+ Kus

ay
g

where the understeer gradient can be rewritten as

Kus =
Wf

Cαf
− Wr

Cαr
=

W

2LCαf Cαr
(Cαr l2 − Cαf l1)

The sign of Kus gives the answer to Question 3:

Positive sign: You have to turn the steering wheel clockwise to make
the car stay on the same circle.
The car turns towards the direction of the unperturbed path.

Equal to zero: You don’t have to do anything. Just lie back and relax.

Negative sign: You have to turn the steering wheel counterclockwise
to make the car stay on the same circle.
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Section 2

The Understeer Gradient Kus
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Understeer gradient Kus

Consider the relation

δf =
L

R
+

(
Wf

Cαf
− Wr

Cαr

)
︸ ︷︷ ︸

=Kus

V 2

gR

Interpretation:

The understeer gradient is equal to the difference between the ratios of the
load and cornering stiffness at the front and rear wheels, respectively.
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Understeer gradient Kus

The understeer gradient can be rewritten as

δf =
L

R
+

W

2LCαf Cαr
(Cαr l2 − Cαf l1)︸ ︷︷ ︸
=Kus

V 2

gR

Interpretation:

The sign of the understeer gradient depends on the difference between the
products of the cornering stiffness and the distance to the center of gravity
at the rear and front wheels, respectively.
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Understeer gradient Kus

Why does the sign of Cαr l2 − Cαf l1 give the answer question 3?

To give a more direct interpretation we shall only consider the equilibrium
of moments

l1Fyf − l2Fyr = 2l1Cαf αf − 2l2Cαrαr = 0,

which gives the relation

l1Cαf αf = l2Cαrαr ,

and the relation

δf =
L

R
+ αf − αr

between the angles.
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The case: Neutral steer

Assume that the radius of the curve R is constant and the speed V
increases. In this case l1Cαf − l2Cαr = 0 and the relation

l1Cαf αf = l2Cαrαr

gives αf = αr and

δf =
L

R
+ αf − αr︸ ︷︷ ︸

=0

does not depend on the speed.
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The case: Understeer

In this case l2Cαr − l1Cαf > 0 and it follows from

l1Cαf αf = l2Cαrαr

that the increase of αf has to larger than the increase of αr , when V
increases.

Hence, the steering angle

δf =
L

R
+ αf − αr

has to be increased.
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The case: Oversteer

In this case l2Cαr − l1Cαf < 0 and it follows from

l1Cαf αf = l2Cαrαr

that the increase of αr has to larger than the increase of αf , when V
increases.

Hence, the steering angle

δf =
L

R
+ αf − αr

has to be increased.
Observation: If Kus < 0 and V = Vcrit =

√
gL/−Kus then

δf =
L

R
+ Kus

V 2

gR
= 0

and does not depend on R.
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Section 3

Handling at Low Speeds
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Handling at low speeds

If the velocity of the car is small, then

δf ≈
L

R

Furthermore,
V = R θ̇

where θ is the direction of the car.

A simple kinematic model of the car:

ẋ = V cos θ

ẏ = V sin θ

θ̇ =
V δf
L
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A kinematic model

Adding longitudinal dynamics gives the following model:

ẋ = V cos θ

ẏ = V sin θ

θ̇ =
V δf
L

mV̇ = F

A typical application is motion planning at, e.g., a parking lot:

TSFS12 Autonomous Vehicles - Planning, Control, and Learning Systems
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Split µ

In some cases there is a difference between the coefficient of friction on
the right- and left-hand side
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Split µ

Assume that the car i back-wheel driven and the coefficient of friction is
µr to the right µl to the left.

Assume that the normal force is equal on the left and right rear wheel, i.e.,
Wr/2.

Maximum acceleration is obtained when

Fr = µhWr/2 + µvWr/2 =
µh + µv

2
Wr

How can we distribute the force between the right and left wheel to reach
maximum acceleration

In the case of the car is braking, the ABS system will take care of the
distribution of braking forces.

If the car is accelerating, then an active differential can solve the problem.
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Differential gear
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Differential gear

Purpose

The wheels can rotate with different angular speed in a curve.

The torque is distributed equally between the wheels.

With an active differential it is possible to partially lock the differential an
distribute the torque between the wheels.
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Steering geometry: Ackermann

Figure 5.2 shows the relationship between the steering angles δo and δi in
case of pure rolling without lateral slip at low speed.

With d = |OF | we get the relations

cot δo =
d + B

L

cot δi =
d

L

and

cot δo − cot δi =
B

L
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Steering geometry: Ackermann

Figure 5.2
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Steering geometry: Ackermann

Two other relations can be seen in the figure

cot δo =
B/2 + e2

e1

cot δi =
B/2− e2

e1

and

cot δo − cot δi =
2e2

e1

it follows from the relations above that

e2

e1
=

B/2

L

Hence, the point Q is located on the line MF .
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Steering geometry: Ackermann

Figure 5.4 shows an example of a steering linkage and how the points O1,
O2 och O3, corresponding to the point Q, are located in relation to the
line MF .
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Steering geometry: Ackermann

Figure 5.4
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